Research Article
BibTex RIS Cite

Effects of Exegenous Glycine Betaine Treatments on Growth and Some Physiological Characteristics of Tomato under Salt Stress Condition

Year 2019, Volume: 50 Issue: 2, 153 - 158, 28.05.2019
https://doi.org/10.17097/ataunizfd.520407

Abstract

The effects of the exogenous foliar application
of glycine betaine (GB) with different doses (0, 5, 10 and 20 mM) on plant
growth, chlorophyll content, stomatal conductance, phenolic and proline
contents in tomato grown under salt stress were evaluated. Tomato plants
(Lycopersicon
esculentum
Mill.)
were imposed to salinity stress for 2 months with
75 mM NaCl. Salt stress reduced the growth, chlorophyll reading values and
stomatal conductance in tomato. GB application decreased the inhibation of salt
stress on tomato plant growth, and increased stomatal conductivity and
chlorophyll content. The effective dose of GB was 10 mM to increase tolerance
against salt stress. Plant height significantly increased in 5, 10 and 20 mM GB
treatments by 2.2, 13.1 and 18.9%, respectively compared to the control. 5 and
10 mM GB treatments significantly increased chlorophyll reading values (51.18
and 53.44, respectively) compared with control (48.92). 10 mM GB exhibited a rapid
increase in stomatal conductivity by 11.3% compared with control. Moreover, 10
mM GB showed an increase in proline content by 53.4% compared with control.
According to results of our study, it can be suggested that exogenous GB treatments
could mitigate the deleterious effects of salt stress in tomato.

References

  • Abbas, W., Ashraf, M., Akram, N.A., 2010. Alleviation of salt-induced adverse effects in eggplant (Solanum melongena L.) by glycinebetaine and sugarbeet extracts. Sci Hortic., 125:188–195.
  • Abrisqueta, J.M., Hernansaenz, A., Alarcon, J.J., Lozano, M.A., 1991. Dinamica del sistema radicular de dos genotipos de tomate en invernadero en riego por goteo sometidos a estres salino. Suelo y Planta. 1:351-361.
  • Aras, S., Eşitken, A., 2013. Effects of antifreeze proteins and glycine betaine on strawberry plants for resistance to cold temperature. Proceedings of International Conference on Agriculture and Biotechnology; Dec 29-30; Malaysia. IPCBEE. 60:107¬–111.
  • Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water- stress studies. Plant Soil. 39:205–207.
  • Chartzoulakis, K.S., Loupassaki, M.H., 1997. Effects of NaCl salinity on germination, growth, gas exchange and yield of greenhouse eggplant. Agr Water Manage. 32:215– 225.
  • Chartzoulakis, K., Klapaki, G., 2000. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci Hortic. 86:247–260.Chen, T.H., Murata, N., 2002. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol., 5:250–7. doi: 10.1016/S1369-5266(02)00255-8.
  • Chinnusamy, V., Jagendorf, A., Zhu, J.K., 2005. Understanding and improving salt tolerance in plants. Crop Sci., 45:437–48.
  • Cruz, V., Cuartero, J., 1990. Effects of salinity at several developmental stages of six genotypes of tomato (Lycopersicon spp.). In: Cuartero J, Gomez-Guillamon ML, Fernandez-Munoz R. (Eds.), Eucarpia Tomato 90, Proc. XIth Eucarpia Meeting on Tomato Genetics and Breeding, Malaga, Spain, pp. 81–86.
  • Cuartero, J., Fernández-Muñoz, R., 1998. Tomato and salinity. Sci Hortic. 78:83–125.Demiral, T., Türkan, I., 2006. Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environ. Exp. Bot., 56:72–79.
  • Ekinci, M., Yıldırım E, Dursun, A., Turan M., 2012. Mitigation of salt stress in lettuce (Lactuca sativa L. var. Crispa) by seed and foliar 24-epibrassinolide treatments. HortScience. 47(5):631–636.
  • Farooq, M., Basra, S.M.A., Wahid, A., Cheema, Z.A., Cheema, M.A., Khaliq, A., 2008. Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci., 194:325–333.
  • Flexas, J., Bota, J., Loreto, F., Cornic, G., Sharkey, T.D., 2004. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol., 6: 269–279.
  • Gadallah, M.A.A., 1999. Effects of proline and glycinebetaine on Vicia faba responses to saltstress. Biol Plantarum. 42:249–257.
  • Ghassemi, F., Jakeman, A.J., Nix, H.A., 1995. Salinisation of Land and Water Resources Human Causes Extent Management and Case Studies. CAB International, Wallingford, Oxon, p. 526.
  • Hu, L., Hu, T., Zhang, X., Pang, H., Fu, J., 2012. Exogenous glycine betaine ameliorates the adverse effect of salt stress on perennial ryegrass. J Am Soc Hortic Sci., 137:38–46.
  • Kanechi, M., Hikosaka, Y., Uno, Y., 2013. Application of sugarbeet pure and crude extracts containing glycinebetaine affects root growth, yield, and photosynthesis of tomato grown during summer. Sci Hortic., 152:9–15.
  • Khadri, M., Tejera, N.A., Lluch, C., 2006. Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid supply. J Plant Growth Regul., 25:110–119.
  • Khan, W., Prithiviraj, B., Smith, D.L., 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol., 160:485–492.Korkmaz, A., Şirikçi, R., Kocaçınar, F., Değer, Ö., Demirkıran, A.R., 2012. Alleviation of salt-induced adverse effects in pepper seedlings by seed application of glycinebetaine. Sci. Hortic., 148:197–205.
  • Maas, E.V. 1986. Salt tolerance of plants. Appl. Agric. Res., 1:12–26.
  • Mäkelä, P., Jokinen, K., Kontturi, M., Peltonen-Sainio, P., Pehu, E., Somersalo, S., 1998. Foliar application of glycinebetaine a novel product from sugar beet as an approach to increase tomato yield. Ind Crop Prod., 7:139–148.
  • Mäkelä, P., Kärkkäinen, J., Somersalo, S., 2000. Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. Biol Plantarum. 43:471–475.
  • Martinez-Beltran, J., Manzur, C.L., 2005. Overview of salinity problems in the world and FAO strategies to address the problem. In: Proceedings of the International Salinity Forum, Riverside, California, April 2005. pp. 311–313.
  • Massai, R., Remorini, D., Tattini, M., 2004. Gas exchange, water relations and osmotic adjustment in two scion/rootstock combinations of Prunus under various salinity concentrations. Plant Soil. 259:153–162.
  • Mitchell, J.P., Shennan, C., Grattan, S.R., May, D.M. 1991. Tomato fruit yield and quality under water deficit and salinity. J Am Soc Hort Sci., 116, 215–221.
  • Moya, J.L., Primo-Millo, E., Talon, M., 1999. Morphological factors determining salt tolerance in citrus seedlings: The shoot to root ratio modulates passive root uptake of chloride ions and their accumulation in leaves. Plant Cell Environ., 22:1425–1433.
  • Munns, R., 1993. Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. Plant Cell Environ., 16: 15–24.
  • Nazar, R., Iqbal, N., Masood, A., Syeed, S., Khan, N.A., 2011. Understanding the significance of sulfur in improving salinity tolerance in plants. Environ Exp Bot., 70:80–87.
  • Parida, A.K, Das, A.B., Sanada, Y., Mohanty, P., 2004. Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquat Bot., 80:77–87.
  • Rajasekaran, L.R., Kriedemann, P.E., Aspinall, D., Paleg, L.G., 1998. Physiological significance of proline and glycinebetaine: maintaining photosynthesis during NaCl stress in wheat. Photosynthetica. 34:357–366.
  • Rice-Evans, C., Miller, N., Paganga, G., 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci., 2:152–159.
  • Santa-Cruz, A., Martinez-Rodriguez, M.M., Perez-Alfocea, F., Romero-Aranda, R., Bolarin, M.C., 2002. The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Sci. 162:825–831.
  • Singleton, V.L., Rossi, J.R., 1965. Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid. Am J Enol Viticult., 16:144–158.
  • Van Ieperen, W., 1996. Effects of different day and night salinity levels on vegetative growth, yield and quality of tomato. J Hortic Sci., 71:99–111.
  • Yang, X., Lu, C., 2005. Photosynthesis is improved by exogenous glycinebetaine in salt‐ stressed maize plants. Physiol Plantarum. 124:343–352.
  • Yıldırım, E., Güvenç, İ., 2006. Salt Tolerance of Pepper Cultivars during Germination and Seedling Growth. Turkish Journal of Agriculture and Forestry, 30 (5): 347-353.
  • Yıldırım, E., Turan, M., Ekinci, M., Dursun, A., Cakmakci, R., 2011. Plant growth promoting rhizobacteria ameliorate deleterious effect of salt stress on lettuce. Scientific Research and Essays. 6 (20): 4389-4396.
  • Yıldırım, E., Ekinci, M., Turan, M., Dursun, A., Kul, R., Parlakova, F., 2015. Roles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.). Archives of Agronomy and Soil Science. Vol. 61, No. 12, 1673–1689. DOI: 10.1080/03650340.2015.1030611.

Glisin Betain Uygulamalarının Tuz Stresi Altında Domatesin Bazı Büyüme ve Fizyolojik Özellikleri Üzerine Etkisi

Year 2019, Volume: 50 Issue: 2, 153 - 158, 28.05.2019
https://doi.org/10.17097/ataunizfd.520407

Abstract

Çalışmada, farklı dozlarda (0, 5, 10 ve 20 mM) yapraktan glisin betainin (GB)
uygulamasının tuz stresi altında yetiştirilen domateslerde bitki büyümesi,
klorofil içeriği, stoma iletkenliği, fenolik ve prolin içeriği üzerindeki
etkileri değerlendirilmiştir. Bu amaçla, domates bitkileri (
Lycopersicon esculentum Mill.), 2 ay
boyunca 75 mM NaCl ile tuzluluk stresine maruz bırakılmıştır. Tuz stresinin,
büyüme parametrelerinde, klorofil içeriğinde ve stoma iletkenliğinde belirgin
bir düşüşe yol açtığı tespit edilmiştir. GB uygulaması, domates bitkisinin
büyümesi üzerine tuz stresinin engelleyici etkisini azaltarak, stoma
iletkenliğinin ve klorofil içeriğinin artmasına neden olmuştur. Tuz stresine
karşı toleransı artırmada en etkili GB dozunun 10 mM olduğu belirlenmiştir. Bitki
boyu 5, 10 ve 20 mM GB uygulamalarında kontrol grubuna göre sırasıyla % 2.2, % 13.1
ve % 18.9 oranında artmıştır. 5 ve 10 mM GB uygulamaları, klorofil değerlerini
(sırasıyla 51.18 ve 53.44) kontrole kıyasla önemli derecede artırmıştır (48.92).
10 mM GB, stoma iletkenliğinde kontrol ile karşılaştırıldığında % 11.3 oranında
bir artış göstermiştir. Ayrıca, 10 mM GB, prolin içeriğini kontrole kıyasla %
53.4 artırdığı saptanmıştır. Çalışmamızın sonuçlarına göre, GB uygulamasının,
tuzluluk koşullarında büyümeyi arttırmak için domates üretiminde faydalı bir
uygulama olabileceği sonucuna varılmıştır.

References

  • Abbas, W., Ashraf, M., Akram, N.A., 2010. Alleviation of salt-induced adverse effects in eggplant (Solanum melongena L.) by glycinebetaine and sugarbeet extracts. Sci Hortic., 125:188–195.
  • Abrisqueta, J.M., Hernansaenz, A., Alarcon, J.J., Lozano, M.A., 1991. Dinamica del sistema radicular de dos genotipos de tomate en invernadero en riego por goteo sometidos a estres salino. Suelo y Planta. 1:351-361.
  • Aras, S., Eşitken, A., 2013. Effects of antifreeze proteins and glycine betaine on strawberry plants for resistance to cold temperature. Proceedings of International Conference on Agriculture and Biotechnology; Dec 29-30; Malaysia. IPCBEE. 60:107¬–111.
  • Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water- stress studies. Plant Soil. 39:205–207.
  • Chartzoulakis, K.S., Loupassaki, M.H., 1997. Effects of NaCl salinity on germination, growth, gas exchange and yield of greenhouse eggplant. Agr Water Manage. 32:215– 225.
  • Chartzoulakis, K., Klapaki, G., 2000. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci Hortic. 86:247–260.Chen, T.H., Murata, N., 2002. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol., 5:250–7. doi: 10.1016/S1369-5266(02)00255-8.
  • Chinnusamy, V., Jagendorf, A., Zhu, J.K., 2005. Understanding and improving salt tolerance in plants. Crop Sci., 45:437–48.
  • Cruz, V., Cuartero, J., 1990. Effects of salinity at several developmental stages of six genotypes of tomato (Lycopersicon spp.). In: Cuartero J, Gomez-Guillamon ML, Fernandez-Munoz R. (Eds.), Eucarpia Tomato 90, Proc. XIth Eucarpia Meeting on Tomato Genetics and Breeding, Malaga, Spain, pp. 81–86.
  • Cuartero, J., Fernández-Muñoz, R., 1998. Tomato and salinity. Sci Hortic. 78:83–125.Demiral, T., Türkan, I., 2006. Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environ. Exp. Bot., 56:72–79.
  • Ekinci, M., Yıldırım E, Dursun, A., Turan M., 2012. Mitigation of salt stress in lettuce (Lactuca sativa L. var. Crispa) by seed and foliar 24-epibrassinolide treatments. HortScience. 47(5):631–636.
  • Farooq, M., Basra, S.M.A., Wahid, A., Cheema, Z.A., Cheema, M.A., Khaliq, A., 2008. Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci., 194:325–333.
  • Flexas, J., Bota, J., Loreto, F., Cornic, G., Sharkey, T.D., 2004. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol., 6: 269–279.
  • Gadallah, M.A.A., 1999. Effects of proline and glycinebetaine on Vicia faba responses to saltstress. Biol Plantarum. 42:249–257.
  • Ghassemi, F., Jakeman, A.J., Nix, H.A., 1995. Salinisation of Land and Water Resources Human Causes Extent Management and Case Studies. CAB International, Wallingford, Oxon, p. 526.
  • Hu, L., Hu, T., Zhang, X., Pang, H., Fu, J., 2012. Exogenous glycine betaine ameliorates the adverse effect of salt stress on perennial ryegrass. J Am Soc Hortic Sci., 137:38–46.
  • Kanechi, M., Hikosaka, Y., Uno, Y., 2013. Application of sugarbeet pure and crude extracts containing glycinebetaine affects root growth, yield, and photosynthesis of tomato grown during summer. Sci Hortic., 152:9–15.
  • Khadri, M., Tejera, N.A., Lluch, C., 2006. Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid supply. J Plant Growth Regul., 25:110–119.
  • Khan, W., Prithiviraj, B., Smith, D.L., 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol., 160:485–492.Korkmaz, A., Şirikçi, R., Kocaçınar, F., Değer, Ö., Demirkıran, A.R., 2012. Alleviation of salt-induced adverse effects in pepper seedlings by seed application of glycinebetaine. Sci. Hortic., 148:197–205.
  • Maas, E.V. 1986. Salt tolerance of plants. Appl. Agric. Res., 1:12–26.
  • Mäkelä, P., Jokinen, K., Kontturi, M., Peltonen-Sainio, P., Pehu, E., Somersalo, S., 1998. Foliar application of glycinebetaine a novel product from sugar beet as an approach to increase tomato yield. Ind Crop Prod., 7:139–148.
  • Mäkelä, P., Kärkkäinen, J., Somersalo, S., 2000. Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. Biol Plantarum. 43:471–475.
  • Martinez-Beltran, J., Manzur, C.L., 2005. Overview of salinity problems in the world and FAO strategies to address the problem. In: Proceedings of the International Salinity Forum, Riverside, California, April 2005. pp. 311–313.
  • Massai, R., Remorini, D., Tattini, M., 2004. Gas exchange, water relations and osmotic adjustment in two scion/rootstock combinations of Prunus under various salinity concentrations. Plant Soil. 259:153–162.
  • Mitchell, J.P., Shennan, C., Grattan, S.R., May, D.M. 1991. Tomato fruit yield and quality under water deficit and salinity. J Am Soc Hort Sci., 116, 215–221.
  • Moya, J.L., Primo-Millo, E., Talon, M., 1999. Morphological factors determining salt tolerance in citrus seedlings: The shoot to root ratio modulates passive root uptake of chloride ions and their accumulation in leaves. Plant Cell Environ., 22:1425–1433.
  • Munns, R., 1993. Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. Plant Cell Environ., 16: 15–24.
  • Nazar, R., Iqbal, N., Masood, A., Syeed, S., Khan, N.A., 2011. Understanding the significance of sulfur in improving salinity tolerance in plants. Environ Exp Bot., 70:80–87.
  • Parida, A.K, Das, A.B., Sanada, Y., Mohanty, P., 2004. Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquat Bot., 80:77–87.
  • Rajasekaran, L.R., Kriedemann, P.E., Aspinall, D., Paleg, L.G., 1998. Physiological significance of proline and glycinebetaine: maintaining photosynthesis during NaCl stress in wheat. Photosynthetica. 34:357–366.
  • Rice-Evans, C., Miller, N., Paganga, G., 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci., 2:152–159.
  • Santa-Cruz, A., Martinez-Rodriguez, M.M., Perez-Alfocea, F., Romero-Aranda, R., Bolarin, M.C., 2002. The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Sci. 162:825–831.
  • Singleton, V.L., Rossi, J.R., 1965. Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid. Am J Enol Viticult., 16:144–158.
  • Van Ieperen, W., 1996. Effects of different day and night salinity levels on vegetative growth, yield and quality of tomato. J Hortic Sci., 71:99–111.
  • Yang, X., Lu, C., 2005. Photosynthesis is improved by exogenous glycinebetaine in salt‐ stressed maize plants. Physiol Plantarum. 124:343–352.
  • Yıldırım, E., Güvenç, İ., 2006. Salt Tolerance of Pepper Cultivars during Germination and Seedling Growth. Turkish Journal of Agriculture and Forestry, 30 (5): 347-353.
  • Yıldırım, E., Turan, M., Ekinci, M., Dursun, A., Cakmakci, R., 2011. Plant growth promoting rhizobacteria ameliorate deleterious effect of salt stress on lettuce. Scientific Research and Essays. 6 (20): 4389-4396.
  • Yıldırım, E., Ekinci, M., Turan, M., Dursun, A., Kul, R., Parlakova, F., 2015. Roles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.). Archives of Agronomy and Soil Science. Vol. 61, No. 12, 1673–1689. DOI: 10.1080/03650340.2015.1030611.
There are 37 citations in total.

Details

Primary Language English
Journal Section ARAŞTIRMALAR
Authors

Cüneyt Civelek This is me

Ertan Yıldırım

Publication Date May 28, 2019
Published in Issue Year 2019 Volume: 50 Issue: 2

Cite

APA Civelek, C., & Yıldırım, E. (2019). Effects of Exegenous Glycine Betaine Treatments on Growth and Some Physiological Characteristics of Tomato under Salt Stress Condition. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 50(2), 153-158. https://doi.org/10.17097/ataunizfd.520407
AMA Civelek C, Yıldırım E. Effects of Exegenous Glycine Betaine Treatments on Growth and Some Physiological Characteristics of Tomato under Salt Stress Condition. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. May 2019;50(2):153-158. doi:10.17097/ataunizfd.520407
Chicago Civelek, Cüneyt, and Ertan Yıldırım. “Effects of Exegenous Glycine Betaine Treatments on Growth and Some Physiological Characteristics of Tomato under Salt Stress Condition”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 50, no. 2 (May 2019): 153-58. https://doi.org/10.17097/ataunizfd.520407.
EndNote Civelek C, Yıldırım E (May 1, 2019) Effects of Exegenous Glycine Betaine Treatments on Growth and Some Physiological Characteristics of Tomato under Salt Stress Condition. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 50 2 153–158.
IEEE C. Civelek and E. Yıldırım, “Effects of Exegenous Glycine Betaine Treatments on Growth and Some Physiological Characteristics of Tomato under Salt Stress Condition”, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, vol. 50, no. 2, pp. 153–158, 2019, doi: 10.17097/ataunizfd.520407.
ISNAD Civelek, Cüneyt - Yıldırım, Ertan. “Effects of Exegenous Glycine Betaine Treatments on Growth and Some Physiological Characteristics of Tomato under Salt Stress Condition”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 50/2 (May 2019), 153-158. https://doi.org/10.17097/ataunizfd.520407.
JAMA Civelek C, Yıldırım E. Effects of Exegenous Glycine Betaine Treatments on Growth and Some Physiological Characteristics of Tomato under Salt Stress Condition. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2019;50:153–158.
MLA Civelek, Cüneyt and Ertan Yıldırım. “Effects of Exegenous Glycine Betaine Treatments on Growth and Some Physiological Characteristics of Tomato under Salt Stress Condition”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, vol. 50, no. 2, 2019, pp. 153-8, doi:10.17097/ataunizfd.520407.
Vancouver Civelek C, Yıldırım E. Effects of Exegenous Glycine Betaine Treatments on Growth and Some Physiological Characteristics of Tomato under Salt Stress Condition. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2019;50(2):153-8.

Articles published in this journal are published under the Creative Commons International License (https://creativecommons.org/licenses/by-nc/4.0/). This allows the work to be copied and distributed in any medium or format provided that the original article is appropriately cited. However, the articles work cannot be used for commercial purposes.

https://creativecommons.org/licenses/by-nc/4.0/