Review
BibTex RIS Cite

Application of Selenium Nanoparticles Diets in Ruminants

Year 2021, Volume: 52 Issue: 1, 98 - 107, 26.01.2021
https://doi.org/10.17097/ataunizfd.786127

Abstract

Selenium nanoparticles (Se NPs) are mineral elements with a particle size of 1 to 100 nm prepared by reducing selenate or selenite. Se NPs have a higher effect on glutathione peroxidase enzyme activity, body weight, nutrient conversion efficiency, nutrient utilization, free radical inhibition, meat quality, survival rate, Se content in tissues, rumen microbial activity, stimulation of enzyme activity compared to other selenium sources (sodium selenite, yeast-derived selenium, organic selenium sources) in animal nutrition with their large surface area/volume ratio. In addition, Se NPs exhibit lower toxicity than selenite. Se NPs can be used at lower doses and thus it may have the potential to reduce environmental pollution indirectly. This review aims to provide a summary of the studies conducted on the physical, chemical, and metabolic properties, oxidative stress, antioxidant defense, dietary requirement, deficiency, fertility, sperm quality and performance of Se NPs used in ruminants nutrition.

References

  • Alexander, J., 2015. Selenium, In Gunnar F. Nordberg, Bruce A. Fowler and Monica Nordberg (Eds).Handbook on the Toxicology of Metals (Fourth Edition), San Diego, Academic Press, p. 1175-1208.
  • Bernard, P., Negretti, D.E., Bratter, V.E., 2000. Influence of high dietary selenium intake on the thyroid hormone level in human serum. Journal of Trace Elements in Medicine and Biology, 20:163–166. https://www.ncbi.nlm.nih.gov/pubmed/8905560.
  • El-Ramady, H.R., Domokos-Szabolcsy, E., Abdalla, N.A., Alshaal, T.A., Shalaby, T.A., Sztrik, A., Prokisch, J., Fári, M., 2014. Selenium and nano-selenium in agroecosystems. Environmental Chemistry Letters, 12(4): 495-510.
  • Gao, X.Y., Zhang, J.S., Zhang, L.D., 2002. Hollow sphere selenium nanoparticles: their in vitro anti hydroxyl radical effect. Advanced Materials, 14: 290–293.
  • Hodgson, J.C., Watkins, C.A., Bayne, C.W., 2006. Contribution of respiratory burst activity to innate immune function and the effect of disease status and agent on chemiluminescence responses by ruminant phagocytes in vitro. Veterinary Immunology and Immunopathology, 112: 12–23.
  • Hu, C.H., Li, Y.L., Xiong, L., Zhang, H.M., Song, J., Xia, M.S., 2012. Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Animal Feed Science and Technology, 177(3–4): 204–210.
  • Huang, B., Zhang, J., Hou, J., Chen, C., 2003. Free radical scavenging efficiency of nano-Se in vitro. Free Radic. Biol. Med. 35: 805–813.
  • Jamil, Z., 2013. Effects of inorganic and nanoform of selenium on growth performance and biochemical indices of mahseer (Tor putitora). MPhil, Quaid-i-Azam University.
  • Jaramillo, F., 2006. Selenium nutrition of morone hybrids including dietary requirements, bioavailability, toxıcity and effects on immune responses and disease resistance. (Doctor of Philosophy Thesis), Texas A&M University.
  • Jia, X., Li, N., Chen, J., 2005. A subchronic toxicity study of elemental Nano-Se in Sprague-Dawley rats. Life Sci. 76: 1989-2003.
  • Kachuee, R., Abdi-Benemar, H., Mansoori, Y., Sánchez-Aparicio, P., Seifdavati, J., Elghandour, M.M.M.Y., Guillén, R.J., Salem, A.Z.M., 2019. Effects of sodium selenite, L-selenomethionine, and selenium nanoparticles during late pregnancy on selenium, zinc, copper, and iron concentrations in Khalkhali goats and their kids. Biological Trace Element Research, 191(2): 389-402.
  • Kojouri, G.A., Jahanabadi, S., Shakibaie, M., Ahadi, M.S., Shahverdi, A.R., 2012b. Effect of selenium supplementation with sodium selenite and selenium nanoparticles on iron homeostasis and transferrin gene expression in sheep: A preliminary study. Research in Veterinary, 93 (1): 275-278.
  • Kojouri, G.A., Sadeghian, S., Mohebbi, A., Dezfouli, M.R.M., 2012a. The effects of oral consumption of selenium nanoparticles on chemotactic and respiratory burst activities of neutrophils in comparison with sodium selenite in sheep. Biological Trace Element Research, 146:160-166.
  • Kojouri, G.H., Haghighi, N., Aliyari, S., Shadkhast, M., Eshareghi Samani, R., Kojouri, A., 2017. Trace mineral changes in response to organic and inorganic selenium supplementation”, Iranian journal of ruminants health research, 5(2,1): 39-45.
  • Köhrle, J., 2004. Selenium in biology and medicine further progress and increasing interest. Journal of Trace Elements in Medicine and Biology, 18(1):61-63.
  • Li, H., Zhang, J., Wang, T., Luo, W., Zhou, Q., Jiang, G., 2008. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: A comparison with sodium selenite. Aquatic Toxicology, 89(4): 251-256.
  • Mahima, C., Garg, A.K., Mittal, G.K., Mudgal, V., 2006. Effect of supplementation of different levels and sources of selenium on the performance of guinea pigs. Biological Trace Element Research, 133:217-226.
  • Marin-Guzman, J., Mahan, D.C., Whitmoyer, R., 2000. Effect of dietary selenium and vitamin E on the ultrastructure and ATP concentration of boar spermatozoa, and the efficacy of added sodium selenite in extended semen on sperm motility. Journal of Animal Science, 78: 1544-1550.
  • Marmiroli, N., Maestri, E., 2008. Health implications of trace elements in the environment and the food chain. In: Prasad MNV (ed) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. Wiley, Hoboken, p. 23–53.
  • Mohapatra, P., Swain, R.K., Mishra, S.K., Behera, T., Swain, P., Mishra, S.S., Behura, N.C., Sabat, S.C., Sethy, K., Dhama, K., Jayasankar, P., 2014: Effects of dietary nano-selenium on tissue selenium deposition, antioxidant status and immune functions in layer chicks. Int. J. Pharm., 10 (3):160-167.
  • Moreno-Reyes, R., Egrise, D., Neve, J., Pasteels, J.L., Schoutens, A., 2001. Selenium deficiency-induced growth retardation is associated with an impaired bone metabolism and osteopenia. Journal of Bone and Mineral Research, 16: 1556-1563.
  • Pappas, A.C. and Zoidis, E., 2012. The role of selenium in chicken physiology: New Insights. In: Chickens: Physiology, Diseases and Farming Practices, Kapur, I. and A. Mehra (Eds.). Nova Science Publishers Inc., New York, USA.
  • Pelyhe, C., Mezes, M., 2013. Myths and facts about the effects of nano-selenium in farm animals-mini review. European Chemical Bulletin, 2(12): 1049-1052.
  • Reilly, C., 2006. Selenium in food and health, 2nd edn. Springer, Berlin.
  • Saadi, A., Dalir-Naghadeh, B., Asri-Rezaei, S., Anassori, E., 2019. Platelet selenium indices as useful diagnostic Surrogate for assessment of selenium status in lambs: an experimental comparative study on the efficacy of sodium selenite vs. selenium nanoparticles. Biological Trace Element Research, 1-9.
  • Sadeghian, S., Kojouri, G.A., Mohebbi, A., 2012. Nanoparticles of selenium as species with stronger physiological effects in sheep in comparison with sodium selenite. Biological Trace Element Research, 146 (3): 302-308.
  • Saha, U., Fayiga, A., Hancock, D., Sonon, L., 2016. Selenium in animal nutrition: deficiencies in soils and forages, requirements, supplementation and toxicity. International Journal of Applied Agricultural Sciences, 2: 112-125.
  • Schwarz, K., Foltz, C.M., 1999. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. 1951. Nutrition, 15(3):255.
  • Shi, L., Xun, W., Yue, W., Zhang, C., Ren, Y., Liu, Q., Wang, Q., Shi, L., 2011a. Effect of elemental nano-selenium on feed digestibility, rumen fermentation, and purine derivatives in sheep. Animal Feed Science and Technology. 163, (2-4): 136-142.
  • Shi, L., Xun, W., Yue, W., Zhang, Z., Ren, Y., Shi, L., Wang, Q., Yang, R., Lei, F., 2011b. Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Ruminant Research, 96: 49–52.
  • Shi, L., Yang, R., Yue, W., Wu, J., Zhao, P., Lei, X., 2009. Comparison of nano-selenium and methionine-selenium on growth and selenium content in blood and tissue of Boer goats lamb. Acta Ecologiae Animalis Domastici, 21:31-39.
  • Shi, L., Yang, R., Yue, W., Xun, W., Zhang, C., Ren, Y., Shi, L., Leil, F., 2010. Effect of elemental nano-selenium on semen quality, glutathione peroxidase activity, and testis ultrastructure in male Boer goats. Animal Reproduction Science, 118 (2-4):248-254.
  • Wang, H.L., Zhang, J.S., Yu, H.Q., 2007. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radical Biology and Medicine, 42:1524–1533.
  • Weixing, D., Dongmei, W., Zheng, L., Cheng, M., Depo, Y., Chaoliang, L., Shaobao, L., 2009. Effects of nano-Se and vitamin E on the anti-oxidative capability of dairy cows in heat stress. China Dairy Cattle, 22-24.
  • Wu, X., Yao, J., Yang, Z., Yue, W., Ren, Y., Zhang, c., Liu, X., Wang, H., Zhao, X., Yuan, S., Wang, Q., Shi, L., Shi, L., 2011. Improved fetal hair follicle development by maternal supplement of selenium at nano size (Nano-Se). Livestock Science, 142 (1-3): 270-275.
  • Xun, W., Shi, L., Yue, W., Zhang, C., Ren, Y., Liu, Q., 2012. Effect of high-dose nano-selenium and selenium–yeast on feed digestibility, rumen fermentation, and purine derivatives in sheep. Biological Trace Element Research, 150 (1-3):130-136. Yaghmaie, P., Ramin, A., Asri-Rezaei, S., Zamani, A., 2017. Evaluation of glutathione peroxidase activity, trace minerals and weight gain following administration of selenium compounds in lambs. Vet. Res. Forum, 8(2): 133–137. PubMed PMID: 28785389.
  • Zhang, J.S., Gao, X.Y., Zhang, L.D., Bao, Y.P., 2001. Biological effects of a nano red elemental selenium. Biofactors,15: 27–38. Zhang, J.S., Wang, H., Yan, X., Zhang, L.D., 2005. Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci, 76: 1099–1109.

Selenyum Nanopartikül Diyetlerinin Ruminantlarda Uygulamaları

Year 2021, Volume: 52 Issue: 1, 98 - 107, 26.01.2021
https://doi.org/10.17097/ataunizfd.786127

Abstract

Selenyum nanopartikülleri (Se NPs), selenat veya selenitin indirgenmesiyle hazırlanan 1 ila 100 nm partikül boyutuna sahip mineral elementlerdir. Se NPs, sahip olduğu geniş yüzey alanı/hacim oranı ile hayvan beslenmesinde diğer selenyum kaynaklarına (sodyum selenit, maya kaynaklı selenyum, organik selenyum kaynakları) kıyasla selenoenzimlerin yukarı regülasyonu, glutatyon peroksidaz enzim aktivitesi, vücut ağırlığı, besin dönüşüm verimliliği, besin kullanımı, serbest radikal inhibisyonu, et kalitesi, hayatta kalma oranı, dokulardaki Se içeriği, rumen mikrobiyal aktivitesi, enzim aktivitesinin uyarılması üzerinde daha yüksek etkiye sahiptir. Ayrıca, Se NPs selenite göre daha düşük toksisite sergilemektedir. Se NPs daha düşük dozlarda kullanılabilmektedir ve böylece dolaylı olarak çevresel kirlenmeyi azaltma potansiyeline sahip olabilmektedir. Bu derleme, ruminatların beslenmesinde kullanılan Se NPs'nin fiziksel, kimyasal ve metabolik özellikleri, oksidatif stres, antioksidan savunma, diyet gereksinimi, eksikliği, doğurganlık, sperm kalitesi ve performans üzerindeki etkileri hakkında yapılan çalışmaların bir özeti vermeyi amaçlamaktadır.

References

  • Alexander, J., 2015. Selenium, In Gunnar F. Nordberg, Bruce A. Fowler and Monica Nordberg (Eds).Handbook on the Toxicology of Metals (Fourth Edition), San Diego, Academic Press, p. 1175-1208.
  • Bernard, P., Negretti, D.E., Bratter, V.E., 2000. Influence of high dietary selenium intake on the thyroid hormone level in human serum. Journal of Trace Elements in Medicine and Biology, 20:163–166. https://www.ncbi.nlm.nih.gov/pubmed/8905560.
  • El-Ramady, H.R., Domokos-Szabolcsy, E., Abdalla, N.A., Alshaal, T.A., Shalaby, T.A., Sztrik, A., Prokisch, J., Fári, M., 2014. Selenium and nano-selenium in agroecosystems. Environmental Chemistry Letters, 12(4): 495-510.
  • Gao, X.Y., Zhang, J.S., Zhang, L.D., 2002. Hollow sphere selenium nanoparticles: their in vitro anti hydroxyl radical effect. Advanced Materials, 14: 290–293.
  • Hodgson, J.C., Watkins, C.A., Bayne, C.W., 2006. Contribution of respiratory burst activity to innate immune function and the effect of disease status and agent on chemiluminescence responses by ruminant phagocytes in vitro. Veterinary Immunology and Immunopathology, 112: 12–23.
  • Hu, C.H., Li, Y.L., Xiong, L., Zhang, H.M., Song, J., Xia, M.S., 2012. Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Animal Feed Science and Technology, 177(3–4): 204–210.
  • Huang, B., Zhang, J., Hou, J., Chen, C., 2003. Free radical scavenging efficiency of nano-Se in vitro. Free Radic. Biol. Med. 35: 805–813.
  • Jamil, Z., 2013. Effects of inorganic and nanoform of selenium on growth performance and biochemical indices of mahseer (Tor putitora). MPhil, Quaid-i-Azam University.
  • Jaramillo, F., 2006. Selenium nutrition of morone hybrids including dietary requirements, bioavailability, toxıcity and effects on immune responses and disease resistance. (Doctor of Philosophy Thesis), Texas A&M University.
  • Jia, X., Li, N., Chen, J., 2005. A subchronic toxicity study of elemental Nano-Se in Sprague-Dawley rats. Life Sci. 76: 1989-2003.
  • Kachuee, R., Abdi-Benemar, H., Mansoori, Y., Sánchez-Aparicio, P., Seifdavati, J., Elghandour, M.M.M.Y., Guillén, R.J., Salem, A.Z.M., 2019. Effects of sodium selenite, L-selenomethionine, and selenium nanoparticles during late pregnancy on selenium, zinc, copper, and iron concentrations in Khalkhali goats and their kids. Biological Trace Element Research, 191(2): 389-402.
  • Kojouri, G.A., Jahanabadi, S., Shakibaie, M., Ahadi, M.S., Shahverdi, A.R., 2012b. Effect of selenium supplementation with sodium selenite and selenium nanoparticles on iron homeostasis and transferrin gene expression in sheep: A preliminary study. Research in Veterinary, 93 (1): 275-278.
  • Kojouri, G.A., Sadeghian, S., Mohebbi, A., Dezfouli, M.R.M., 2012a. The effects of oral consumption of selenium nanoparticles on chemotactic and respiratory burst activities of neutrophils in comparison with sodium selenite in sheep. Biological Trace Element Research, 146:160-166.
  • Kojouri, G.H., Haghighi, N., Aliyari, S., Shadkhast, M., Eshareghi Samani, R., Kojouri, A., 2017. Trace mineral changes in response to organic and inorganic selenium supplementation”, Iranian journal of ruminants health research, 5(2,1): 39-45.
  • Köhrle, J., 2004. Selenium in biology and medicine further progress and increasing interest. Journal of Trace Elements in Medicine and Biology, 18(1):61-63.
  • Li, H., Zhang, J., Wang, T., Luo, W., Zhou, Q., Jiang, G., 2008. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: A comparison with sodium selenite. Aquatic Toxicology, 89(4): 251-256.
  • Mahima, C., Garg, A.K., Mittal, G.K., Mudgal, V., 2006. Effect of supplementation of different levels and sources of selenium on the performance of guinea pigs. Biological Trace Element Research, 133:217-226.
  • Marin-Guzman, J., Mahan, D.C., Whitmoyer, R., 2000. Effect of dietary selenium and vitamin E on the ultrastructure and ATP concentration of boar spermatozoa, and the efficacy of added sodium selenite in extended semen on sperm motility. Journal of Animal Science, 78: 1544-1550.
  • Marmiroli, N., Maestri, E., 2008. Health implications of trace elements in the environment and the food chain. In: Prasad MNV (ed) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. Wiley, Hoboken, p. 23–53.
  • Mohapatra, P., Swain, R.K., Mishra, S.K., Behera, T., Swain, P., Mishra, S.S., Behura, N.C., Sabat, S.C., Sethy, K., Dhama, K., Jayasankar, P., 2014: Effects of dietary nano-selenium on tissue selenium deposition, antioxidant status and immune functions in layer chicks. Int. J. Pharm., 10 (3):160-167.
  • Moreno-Reyes, R., Egrise, D., Neve, J., Pasteels, J.L., Schoutens, A., 2001. Selenium deficiency-induced growth retardation is associated with an impaired bone metabolism and osteopenia. Journal of Bone and Mineral Research, 16: 1556-1563.
  • Pappas, A.C. and Zoidis, E., 2012. The role of selenium in chicken physiology: New Insights. In: Chickens: Physiology, Diseases and Farming Practices, Kapur, I. and A. Mehra (Eds.). Nova Science Publishers Inc., New York, USA.
  • Pelyhe, C., Mezes, M., 2013. Myths and facts about the effects of nano-selenium in farm animals-mini review. European Chemical Bulletin, 2(12): 1049-1052.
  • Reilly, C., 2006. Selenium in food and health, 2nd edn. Springer, Berlin.
  • Saadi, A., Dalir-Naghadeh, B., Asri-Rezaei, S., Anassori, E., 2019. Platelet selenium indices as useful diagnostic Surrogate for assessment of selenium status in lambs: an experimental comparative study on the efficacy of sodium selenite vs. selenium nanoparticles. Biological Trace Element Research, 1-9.
  • Sadeghian, S., Kojouri, G.A., Mohebbi, A., 2012. Nanoparticles of selenium as species with stronger physiological effects in sheep in comparison with sodium selenite. Biological Trace Element Research, 146 (3): 302-308.
  • Saha, U., Fayiga, A., Hancock, D., Sonon, L., 2016. Selenium in animal nutrition: deficiencies in soils and forages, requirements, supplementation and toxicity. International Journal of Applied Agricultural Sciences, 2: 112-125.
  • Schwarz, K., Foltz, C.M., 1999. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. 1951. Nutrition, 15(3):255.
  • Shi, L., Xun, W., Yue, W., Zhang, C., Ren, Y., Liu, Q., Wang, Q., Shi, L., 2011a. Effect of elemental nano-selenium on feed digestibility, rumen fermentation, and purine derivatives in sheep. Animal Feed Science and Technology. 163, (2-4): 136-142.
  • Shi, L., Xun, W., Yue, W., Zhang, Z., Ren, Y., Shi, L., Wang, Q., Yang, R., Lei, F., 2011b. Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Ruminant Research, 96: 49–52.
  • Shi, L., Yang, R., Yue, W., Wu, J., Zhao, P., Lei, X., 2009. Comparison of nano-selenium and methionine-selenium on growth and selenium content in blood and tissue of Boer goats lamb. Acta Ecologiae Animalis Domastici, 21:31-39.
  • Shi, L., Yang, R., Yue, W., Xun, W., Zhang, C., Ren, Y., Shi, L., Leil, F., 2010. Effect of elemental nano-selenium on semen quality, glutathione peroxidase activity, and testis ultrastructure in male Boer goats. Animal Reproduction Science, 118 (2-4):248-254.
  • Wang, H.L., Zhang, J.S., Yu, H.Q., 2007. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radical Biology and Medicine, 42:1524–1533.
  • Weixing, D., Dongmei, W., Zheng, L., Cheng, M., Depo, Y., Chaoliang, L., Shaobao, L., 2009. Effects of nano-Se and vitamin E on the anti-oxidative capability of dairy cows in heat stress. China Dairy Cattle, 22-24.
  • Wu, X., Yao, J., Yang, Z., Yue, W., Ren, Y., Zhang, c., Liu, X., Wang, H., Zhao, X., Yuan, S., Wang, Q., Shi, L., Shi, L., 2011. Improved fetal hair follicle development by maternal supplement of selenium at nano size (Nano-Se). Livestock Science, 142 (1-3): 270-275.
  • Xun, W., Shi, L., Yue, W., Zhang, C., Ren, Y., Liu, Q., 2012. Effect of high-dose nano-selenium and selenium–yeast on feed digestibility, rumen fermentation, and purine derivatives in sheep. Biological Trace Element Research, 150 (1-3):130-136. Yaghmaie, P., Ramin, A., Asri-Rezaei, S., Zamani, A., 2017. Evaluation of glutathione peroxidase activity, trace minerals and weight gain following administration of selenium compounds in lambs. Vet. Res. Forum, 8(2): 133–137. PubMed PMID: 28785389.
  • Zhang, J.S., Gao, X.Y., Zhang, L.D., Bao, Y.P., 2001. Biological effects of a nano red elemental selenium. Biofactors,15: 27–38. Zhang, J.S., Wang, H., Yan, X., Zhang, L.D., 2005. Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci, 76: 1099–1109.
There are 37 citations in total.

Details

Primary Language English
Journal Section DERLEMELER
Authors

Semra Çiçek 0000-0002-2927-2793

Serpil Turhan This is me 0000-0001-8874-5688

Sevda Işık This is me 0000-0003-4486-759X

Publication Date January 26, 2021
Published in Issue Year 2021 Volume: 52 Issue: 1

Cite

APA Çiçek, S., Turhan, S., & Işık, S. (2021). Application of Selenium Nanoparticles Diets in Ruminants. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 52(1), 98-107. https://doi.org/10.17097/ataunizfd.786127
AMA Çiçek S, Turhan S, Işık S. Application of Selenium Nanoparticles Diets in Ruminants. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. January 2021;52(1):98-107. doi:10.17097/ataunizfd.786127
Chicago Çiçek, Semra, Serpil Turhan, and Sevda Işık. “Application of Selenium Nanoparticles Diets in Ruminants”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 52, no. 1 (January 2021): 98-107. https://doi.org/10.17097/ataunizfd.786127.
EndNote Çiçek S, Turhan S, Işık S (January 1, 2021) Application of Selenium Nanoparticles Diets in Ruminants. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 52 1 98–107.
IEEE S. Çiçek, S. Turhan, and S. Işık, “Application of Selenium Nanoparticles Diets in Ruminants”, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, vol. 52, no. 1, pp. 98–107, 2021, doi: 10.17097/ataunizfd.786127.
ISNAD Çiçek, Semra et al. “Application of Selenium Nanoparticles Diets in Ruminants”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 52/1 (January 2021), 98-107. https://doi.org/10.17097/ataunizfd.786127.
JAMA Çiçek S, Turhan S, Işık S. Application of Selenium Nanoparticles Diets in Ruminants. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2021;52:98–107.
MLA Çiçek, Semra et al. “Application of Selenium Nanoparticles Diets in Ruminants”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, vol. 52, no. 1, 2021, pp. 98-107, doi:10.17097/ataunizfd.786127.
Vancouver Çiçek S, Turhan S, Işık S. Application of Selenium Nanoparticles Diets in Ruminants. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2021;52(1):98-107.

Articles published in this journal are published under the Creative Commons International License (https://creativecommons.org/licenses/by-nc/4.0/). This allows the work to be copied and distributed in any medium or format provided that the original article is appropriately cited. However, the articles work cannot be used for commercial purposes.

https://creativecommons.org/licenses/by-nc/4.0/