Research Article
BibTex RIS Cite
Year 2018, , 11 - 32, 25.03.2018
https://doi.org/10.31197/atnaa.379282

Abstract

References

  • M. Abramowitz and I. A. Stegun, (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 2nd printing, National Bureau of Standards, Applied Mathematical Series 55, 1964.
  • T. M. Apostol, Mathematical Analysis, second ed., Addison-Wesley, Reading MA, 1974.
  • L. C. Becker, Properties of the resolvent of a linear Abel integral equation: implications for a complementary fractional equation, Electron. J. Qual. Theory Differ. Equ., No. 64 (2016), 1–38.
  • L. C. Becker, T. A. Burton, and I. K. Purnaras, Complementary equations: A fractional differential equation and a Volterra integral equation, Electron. J. Qual. Theory Differ. Equ., No. 12 (2015), 1–24.
  • L. C. Becker, Resolvents for weakly singular kernels and fractional differential equations, Nonlinear Anal.: TMA 75 (2012), 4839–4861.
  • K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Heidelberg, 2010.
  • A. Friedman, On integral equations of Volterra type, J. d’Analyse Math., Vol. XI (1963), 381–413.
  • W. Fulks, Advanced Calculus, 2nd ed., John Wiley & Sons, New York, 1969.
  • I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Seventh Edition, Elsevier Academic Press, 2007.
  • A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies 204, Elsevier, 2006.
  • F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, Solitons and Fractals, Vol. 7, No. 9 (1996), 1461–1477.
  • F. Mainardi and R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes, J. Comput. Appl. Math., 118 (2000), 283–299.
  • J.B. Marion, Classical Dynamics of Particles and Systems, Academic Press, New York, 1965.
  • Miller, R. K., Nonlinear Volterra Integral Equations, Benjamin, Menlo Park, CA, 1971.
  • I.P. Natanson, Theory of Functions of a Real Variable, Vol. II, Frederick Ungar Publishing Co., New York, 1961.
  • K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Dover, Mineola, NY, 2006.
  • I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Vol. 198, Academic Press, San Diego, 1999.
  • J. J. Rosales, M. Guía, F. Gómez, F. Aguilar, and J. Martinez, Two dimensional fractional projectile motion in a resisting medium, Cent. Eur. J. Phys., 12(7) (2014), 517–520.

Fractional Relaxation Equations and a Cauchy Formula for Repeated Integration of the Resolvent

Year 2018, , 11 - 32, 25.03.2018
https://doi.org/10.31197/atnaa.379282

Abstract

Cauchy’s formula for repeated integration is shown to be valid for the function
R(t) = 􀀀(q)tq􀀀1Eq;q(􀀀􀀀(q)tq)
where and q are given positive constants with q 2 (0; 1), 􀀀 is the Gamma function, and Eq;q is a Mittag-
Leffler function. The function R is important in the study of Volterra integral equations because it is the
unique continuous solution of the so-called resolvent equation
R(t) = tq􀀀1 􀀀
Z t
0
(t 􀀀 s)q􀀀1R(s) ds
on the interval (0;1). This solution, commonly called the resolvent, is used to derive a formula for the
unique continuous solution of the Riemann-Liouville fractional relaxation equation
Dqx(t) = 􀀀ax(t) + g(t) (a > 0)
on the interval [0;1) when g is a given polynomial. This formula is used to solve a generalization of the
equation of motion of a falling body. The last example shows that the solution of a fractional relaxation
equation may be quite elementary despite the complexity of the resolvent.

References

  • M. Abramowitz and I. A. Stegun, (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 2nd printing, National Bureau of Standards, Applied Mathematical Series 55, 1964.
  • T. M. Apostol, Mathematical Analysis, second ed., Addison-Wesley, Reading MA, 1974.
  • L. C. Becker, Properties of the resolvent of a linear Abel integral equation: implications for a complementary fractional equation, Electron. J. Qual. Theory Differ. Equ., No. 64 (2016), 1–38.
  • L. C. Becker, T. A. Burton, and I. K. Purnaras, Complementary equations: A fractional differential equation and a Volterra integral equation, Electron. J. Qual. Theory Differ. Equ., No. 12 (2015), 1–24.
  • L. C. Becker, Resolvents for weakly singular kernels and fractional differential equations, Nonlinear Anal.: TMA 75 (2012), 4839–4861.
  • K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Heidelberg, 2010.
  • A. Friedman, On integral equations of Volterra type, J. d’Analyse Math., Vol. XI (1963), 381–413.
  • W. Fulks, Advanced Calculus, 2nd ed., John Wiley & Sons, New York, 1969.
  • I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Seventh Edition, Elsevier Academic Press, 2007.
  • A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies 204, Elsevier, 2006.
  • F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, Solitons and Fractals, Vol. 7, No. 9 (1996), 1461–1477.
  • F. Mainardi and R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes, J. Comput. Appl. Math., 118 (2000), 283–299.
  • J.B. Marion, Classical Dynamics of Particles and Systems, Academic Press, New York, 1965.
  • Miller, R. K., Nonlinear Volterra Integral Equations, Benjamin, Menlo Park, CA, 1971.
  • I.P. Natanson, Theory of Functions of a Real Variable, Vol. II, Frederick Ungar Publishing Co., New York, 1961.
  • K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Dover, Mineola, NY, 2006.
  • I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Vol. 198, Academic Press, San Diego, 1999.
  • J. J. Rosales, M. Guía, F. Gómez, F. Aguilar, and J. Martinez, Two dimensional fractional projectile motion in a resisting medium, Cent. Eur. J. Phys., 12(7) (2014), 517–520.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Leigh C. Becker This is me

İoannis K. Purnaras This is me

Publication Date March 25, 2018
Published in Issue Year 2018

Cite