Research Article
BibTex RIS Cite
Year 2019, , 192 - 200, 30.12.2019
https://doi.org/10.31197/atnaa.573972

Abstract

References

  • M. Ba¥v{c}¥'{a}k, ¥emph{The proximal point algorithm in metric spaces}, Isreal J. Math. ¥textbf{29} (2013), 689--701.
  • M. Bacak, Convex Analysis and Optimization in Hadamard Spaces, De Gruyter, Wurzbrung, 2014.
  • M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer-Verlag, Berlin, 1999.
  • S. Dhompongsa, W. A. Kirk, B. Sims, Fixed points of uniformly lipschitzian mappings, Nonlinear Analysis. 65 (2006), 762--772.
  • T. Kajimura and Y. Kimura, Resolvents of convex functions in complete geodesic spaces with negative curvature, J. Fixed Point Theory Appl. 21 (2019).
  • Y. Kimura and F. Kohsaka, Spherical nonspreadingness of resolvents of convex functions in geodesic spaces, J. Fixed Point Theory Appl. 18 (2016), 93--115.
  • Y. Kimura and F. Kohsaka, The proximal point algorithm in geodesic spaces with curvature bounded above, Linear and Nonlinear Analysis 3, No. 1 (2017), 73--86.
  • F. Kohsaka, Existence and approximation of fixed points of vicinal mappings in geodesic spaces, Pure Appl. Funct. Anal. 3 (2018), 91--106.
  • U. F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom. 6 (1998), 199--206.
  • R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), 877--898.

The proximal point algorithm in complete geodesic spaces with negative curvature

Year 2019, , 192 - 200, 30.12.2019
https://doi.org/10.31197/atnaa.573972

Abstract

The proximal point algorithm is an approximation method for finding a minimizer of a convex function. In this paper, we introduce the resolvent for a convex function in complete geodesic spaces with negative curvature. Using properties of the resolvent, we show the proximal point algorithm in complete geodesic spaces with negative curvature. 

References

  • M. Ba¥v{c}¥'{a}k, ¥emph{The proximal point algorithm in metric spaces}, Isreal J. Math. ¥textbf{29} (2013), 689--701.
  • M. Bacak, Convex Analysis and Optimization in Hadamard Spaces, De Gruyter, Wurzbrung, 2014.
  • M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer-Verlag, Berlin, 1999.
  • S. Dhompongsa, W. A. Kirk, B. Sims, Fixed points of uniformly lipschitzian mappings, Nonlinear Analysis. 65 (2006), 762--772.
  • T. Kajimura and Y. Kimura, Resolvents of convex functions in complete geodesic spaces with negative curvature, J. Fixed Point Theory Appl. 21 (2019).
  • Y. Kimura and F. Kohsaka, Spherical nonspreadingness of resolvents of convex functions in geodesic spaces, J. Fixed Point Theory Appl. 18 (2016), 93--115.
  • Y. Kimura and F. Kohsaka, The proximal point algorithm in geodesic spaces with curvature bounded above, Linear and Nonlinear Analysis 3, No. 1 (2017), 73--86.
  • F. Kohsaka, Existence and approximation of fixed points of vicinal mappings in geodesic spaces, Pure Appl. Funct. Anal. 3 (2018), 91--106.
  • U. F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom. 6 (1998), 199--206.
  • R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), 877--898.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Takuto Kajimura

Yasunori Kimura This is me

Publication Date December 30, 2019
Published in Issue Year 2019

Cite