Research Article
BibTex RIS Cite

Remarks on solutions to the functional equations of the radical type

Year 2017, Volume: 1 Issue: 2, 125 - 135, 20.12.2017
https://doi.org/10.31197/atnaa.379095

Abstract

This is an expository paper containing remarks on solutions to some functional equations of a form, that could be called of the radical type. Simple natural examples of them are the following two functional equations fn √xn + yn= f(x) + f(y),f n √xn + yn+ fn p|xn −yn|= 2f(x) + 2f(y) considered recently in several papers, for real functions and with given positive integer n, in connection with the notion of Ulam (or Hyers-Ulam) stability. We provide a general method allowing to determine solutions to them.

References

  • J. Aczél, J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989.
  • L. Aiemsomboon, W. Sintunavarat, On a new type of stability of a radical quadratic functional equation using Brzdek’s fixed point theorem, Acta Math. Hungar. 151 (2017), 35–46.
  • Z. Alizadeh, A.G. Ghazanfari, On the stability of a radical cubic functional equation in quasi- -spaces, J. Fixed Point Th. Appl. 18 (2016), 843–853.
  • N. Brillouët-Belluot, J. Brzdek, K. Cieplinski, On some recent developments in Ulam’s type stability, Abstr. Appl. Anal. 2012, Art. ID 716936, 41 pp.
  • Y.J. Cho, M. Eshaghi Gordji, S.S. Kim, Y. Yang, On the stability of radical functional equations in quasi- -normed spaces, Bull. Korean Math. Soc. 51 (2014), 1511–1525.
  • J. Dhombres, Some Aspects of Functional Equations, Chulalongkorn University Press, Bangkok, 1979.
  • I. EL-Fassi, Approximate solution of radical quartic functional equation related to additive mapping in 2-Banach spaces, J. Math. Anal. Appl. 455 (2017), 2001–2013.
  • I. EL-Fassi, On a new type of hyperstability for radical cubic functional equation in non-archimedean metric spaces, Results Math. 72 (2017), 991–1005.
  • H. Khodaei, M. Eshaghi Gordji, S.S. Kim, Y.J. Cho, Approximation of radical functional equations related to quadratic and quartic mappings, J. Math. Anal. Appl. 395 (2012), 284–297.
  • S.S. Kim, Y.J. Cho, M. Eshaghi Gordji, On the generalized Hyers-Ulam-Rassias stability problem of radical functional equations, J. Inequal. Appl. 186 (2012), pp. 13.
  • M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Panstwowe Wydawnictwo Naukowe & Uniwersytet Slaski, Warszawa–Kraków–Katowice, 1985.
  • E. Movahednia, H. Mehrannia, Fixed point method and Hyers-Ulam-Rassias stability of a radical functional equation in various spaces, Intl. Res. J. Appl. Basic. Sci. 5 (8) (2013), 1067–1072.
  • P. Narasimman, K. Ravi, S. Pinelas, Stability of Pythagorean mean functional equation, Global J. Math. 4 (2015), 398–411.
  • J. Olko, M. Piszczek (eds.), Report of meeting: 16th International Conference on Functional Equations and Inequalities, Bedlewo, Poland, May 17–23, 2015, Ann. Univ. Paedagog. Crac. Stud. Math. 14 (2015), 163–202.
  • S. Phiangsungnoen, On stability of radical quadratic functional equation in random normed spaces, IEEE Xplore Digital Library, 2015 International Conference on Science and Technology (TICST), 450–455. DOI: 10.1109/TICST.2015.7369399
Year 2017, Volume: 1 Issue: 2, 125 - 135, 20.12.2017
https://doi.org/10.31197/atnaa.379095

Abstract

References

  • J. Aczél, J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989.
  • L. Aiemsomboon, W. Sintunavarat, On a new type of stability of a radical quadratic functional equation using Brzdek’s fixed point theorem, Acta Math. Hungar. 151 (2017), 35–46.
  • Z. Alizadeh, A.G. Ghazanfari, On the stability of a radical cubic functional equation in quasi- -spaces, J. Fixed Point Th. Appl. 18 (2016), 843–853.
  • N. Brillouët-Belluot, J. Brzdek, K. Cieplinski, On some recent developments in Ulam’s type stability, Abstr. Appl. Anal. 2012, Art. ID 716936, 41 pp.
  • Y.J. Cho, M. Eshaghi Gordji, S.S. Kim, Y. Yang, On the stability of radical functional equations in quasi- -normed spaces, Bull. Korean Math. Soc. 51 (2014), 1511–1525.
  • J. Dhombres, Some Aspects of Functional Equations, Chulalongkorn University Press, Bangkok, 1979.
  • I. EL-Fassi, Approximate solution of radical quartic functional equation related to additive mapping in 2-Banach spaces, J. Math. Anal. Appl. 455 (2017), 2001–2013.
  • I. EL-Fassi, On a new type of hyperstability for radical cubic functional equation in non-archimedean metric spaces, Results Math. 72 (2017), 991–1005.
  • H. Khodaei, M. Eshaghi Gordji, S.S. Kim, Y.J. Cho, Approximation of radical functional equations related to quadratic and quartic mappings, J. Math. Anal. Appl. 395 (2012), 284–297.
  • S.S. Kim, Y.J. Cho, M. Eshaghi Gordji, On the generalized Hyers-Ulam-Rassias stability problem of radical functional equations, J. Inequal. Appl. 186 (2012), pp. 13.
  • M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Panstwowe Wydawnictwo Naukowe & Uniwersytet Slaski, Warszawa–Kraków–Katowice, 1985.
  • E. Movahednia, H. Mehrannia, Fixed point method and Hyers-Ulam-Rassias stability of a radical functional equation in various spaces, Intl. Res. J. Appl. Basic. Sci. 5 (8) (2013), 1067–1072.
  • P. Narasimman, K. Ravi, S. Pinelas, Stability of Pythagorean mean functional equation, Global J. Math. 4 (2015), 398–411.
  • J. Olko, M. Piszczek (eds.), Report of meeting: 16th International Conference on Functional Equations and Inequalities, Bedlewo, Poland, May 17–23, 2015, Ann. Univ. Paedagog. Crac. Stud. Math. 14 (2015), 163–202.
  • S. Phiangsungnoen, On stability of radical quadratic functional equation in random normed spaces, IEEE Xplore Digital Library, 2015 International Conference on Science and Technology (TICST), 450–455. DOI: 10.1109/TICST.2015.7369399
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Janusz Brzdek This is me

Publication Date December 20, 2017
Published in Issue Year 2017 Volume: 1 Issue: 2

Cite