Research Article
BibTex RIS Cite

Some qualitative properties of mild solutions of a second-order integro-differential inclusion

Year 2019, Volume: 3 Issue: 3, 141 - 149, 31.08.2019
https://doi.org/10.31197/atnaa.612236

Abstract

We prove the Lipschitz dependence on the initial data of the solution set of a Cauchy problem associated to a second-order integro-differential inclusion by using the contraction


principle in the space of selections of the multifunction instead of the space of solutions. A Filippov type existence theorem for this problem is also provided.

References

  • 1. A. Baliki, M. Benchohra, J.R. Graef, Global existence and stability of second order functional evolutionequations with infinite delay, Electronic J. Qual. Theory Differ. Equations, 2016, no. 23, (2016), 1-10.
  • 2. A. Baliki, M. Benchohra, J.J. Nieto, Qualitative analysis of second-order functional evolution equations,Dynamic Syst. Appl., 24 (2015), 559-572.
  • 3. M. Benchohra, I. Medjadj, Global existence results for second order neutral functional differential equationswith state-dependent delay, Comment. Math. Univ. Carolin. 57 (2016), 169-183.
  • 4. C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977.
  • 5. A. Cernea, Lipschitz-continuity of the solution map of some nonconvex evolution inclusions, Anal. Univ. Bucuresti,Mat., 57 (2008), 189-198.
  • 6. A. Cernea, On the existence of mild solutions of a nonconvex evolution inclusion, Math. Commun., 13 (2008),107-114.
  • 7. A. Cernea, Some remarks on the solutions of a second-order evolution inclusion, Dynamic Syst. Appl., 27 (2018), 319-330.
  • 8. H. Covitz, S. B. Nadler jr., Multivalued contraction mapping in generalized metric spaces, Israel J. Math., 8 (1970), 5-11.
  • 9. N. Dunford, B.J. Pettis, Linear operators and summable functions, Trans. Amer. Math. Soc., 47 (1940), 323-392.
  • 10. A.F. Filippov, Classical solutions of differential equations with multivalued right-hand side, SIAM J. Control Optim., 5 (1967), 609-621.
  • 11. H.R. Henriquez, Existence of solutions of nonautonomous second order functional differential equations with infinite delay, Nonlinear Anal., 74 (2011), 3333-3352.
  • 12. H.R. Henriquez, V. Poblete, J.C. Pozo, Mild solutions of non-autonomous second order problems with nonlocal initial conditions, J. Math. Anal. Appl., 412 (2014), 1064-1083.
  • 13. Z. Kannai, P. Tallos, Stability of solution sets of differential inclusions, Acta Sci. Math. (Szeged), 61 (1995), 197-207.
  • 14. M. Kozak, A fundamental solution of a second-order differential equation in a Banach space, Univ. Iagel. Acta. Math., 32 (1995), 275-289.
  • 15. T. C. Lim, On fixed point stability for set valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl., 110 (1985), 436-441.
  • 16. P. Talllos, A Filippov-Gronwall type inequality in infinite dimensional space, Pure Math. Appl., 5 (1994), 355-362.
Year 2019, Volume: 3 Issue: 3, 141 - 149, 31.08.2019
https://doi.org/10.31197/atnaa.612236

Abstract

References

  • 1. A. Baliki, M. Benchohra, J.R. Graef, Global existence and stability of second order functional evolutionequations with infinite delay, Electronic J. Qual. Theory Differ. Equations, 2016, no. 23, (2016), 1-10.
  • 2. A. Baliki, M. Benchohra, J.J. Nieto, Qualitative analysis of second-order functional evolution equations,Dynamic Syst. Appl., 24 (2015), 559-572.
  • 3. M. Benchohra, I. Medjadj, Global existence results for second order neutral functional differential equationswith state-dependent delay, Comment. Math. Univ. Carolin. 57 (2016), 169-183.
  • 4. C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977.
  • 5. A. Cernea, Lipschitz-continuity of the solution map of some nonconvex evolution inclusions, Anal. Univ. Bucuresti,Mat., 57 (2008), 189-198.
  • 6. A. Cernea, On the existence of mild solutions of a nonconvex evolution inclusion, Math. Commun., 13 (2008),107-114.
  • 7. A. Cernea, Some remarks on the solutions of a second-order evolution inclusion, Dynamic Syst. Appl., 27 (2018), 319-330.
  • 8. H. Covitz, S. B. Nadler jr., Multivalued contraction mapping in generalized metric spaces, Israel J. Math., 8 (1970), 5-11.
  • 9. N. Dunford, B.J. Pettis, Linear operators and summable functions, Trans. Amer. Math. Soc., 47 (1940), 323-392.
  • 10. A.F. Filippov, Classical solutions of differential equations with multivalued right-hand side, SIAM J. Control Optim., 5 (1967), 609-621.
  • 11. H.R. Henriquez, Existence of solutions of nonautonomous second order functional differential equations with infinite delay, Nonlinear Anal., 74 (2011), 3333-3352.
  • 12. H.R. Henriquez, V. Poblete, J.C. Pozo, Mild solutions of non-autonomous second order problems with nonlocal initial conditions, J. Math. Anal. Appl., 412 (2014), 1064-1083.
  • 13. Z. Kannai, P. Tallos, Stability of solution sets of differential inclusions, Acta Sci. Math. (Szeged), 61 (1995), 197-207.
  • 14. M. Kozak, A fundamental solution of a second-order differential equation in a Banach space, Univ. Iagel. Acta. Math., 32 (1995), 275-289.
  • 15. T. C. Lim, On fixed point stability for set valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl., 110 (1985), 436-441.
  • 16. P. Talllos, A Filippov-Gronwall type inequality in infinite dimensional space, Pure Math. Appl., 5 (1994), 355-362.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Aurelian Cernea

Publication Date August 31, 2019
Published in Issue Year 2019 Volume: 3 Issue: 3

Cite