Research Article
BibTex RIS Cite

Suzuki - $F(\psi-\phi)-\alpha$ type fixed point theorem on quasi metric spaces

Year 2020, Volume: 4 Issue: 1, 43 - 50, 31.03.2020
https://doi.org/10.31197/atnaa.643140

Abstract

In this paper, we obtain a $\alpha$-Suzuki  fixed point theorem by using $C$ - class function on  quasi metric spaces. Also we give an example which supports our main theorem.

References

  • [1] A.H. Ansari, Note on phi-psi--contractive type mappings and related fixed point, The 2nd Regional Conference on Math.Appl.PNU, Sept.(2014), 377–380.
  • [2] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equation integrals, Fund. Math.,3(1922),133–181.
  • [3] E. Karapinar, B. Samet, Generalized ( alpha-psi)-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal , 2012 (2012) Article id: 793486
  • [4] E. Karapinar, P. Kumam, Salimi, On alpha-psi - Meir-Keeler contractive mappings, Fixed Point Theory Appl.2013, Article ID94(2013).
  • [5] O. Popescu, Two generalizations of some fixed point theorems, Comp. Math. Appl., 62, 3912–3919, (2011).
  • [6] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for alpha-psi-contractive mappings, Nonlinear Anal. 75(2012), 2154–2165.
  • [7] T. Suzuki, A generalized Banach contraction principle which characterizes metric completeness, Proc. Amer. Math. Soc. 2008. vol. 136, pp. 1861–1869.
Year 2020, Volume: 4 Issue: 1, 43 - 50, 31.03.2020
https://doi.org/10.31197/atnaa.643140

Abstract

References

  • [1] A.H. Ansari, Note on phi-psi--contractive type mappings and related fixed point, The 2nd Regional Conference on Math.Appl.PNU, Sept.(2014), 377–380.
  • [2] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equation integrals, Fund. Math.,3(1922),133–181.
  • [3] E. Karapinar, B. Samet, Generalized ( alpha-psi)-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal , 2012 (2012) Article id: 793486
  • [4] E. Karapinar, P. Kumam, Salimi, On alpha-psi - Meir-Keeler contractive mappings, Fixed Point Theory Appl.2013, Article ID94(2013).
  • [5] O. Popescu, Two generalizations of some fixed point theorems, Comp. Math. Appl., 62, 3912–3919, (2011).
  • [6] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for alpha-psi-contractive mappings, Nonlinear Anal. 75(2012), 2154–2165.
  • [7] T. Suzuki, A generalized Banach contraction principle which characterizes metric completeness, Proc. Amer. Math. Soc. 2008. vol. 136, pp. 1861–1869.
There are 7 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Venigalla Madhulatha Himabindu

Publication Date March 31, 2020
Published in Issue Year 2020 Volume: 4 Issue: 1

Cite

Cited By

Hu's characterization of metric completeness revisited
Advances in the Theory of Nonlinear Analysis and its Application
https://doi.org/10.31197/atnaa.1090077