Research Article
BibTex RIS Cite

Analysis of a fractional boundary value problem involving Riesz-Caputo fractional derivative

Year 2022, Volume: 6 Issue: 1, 14 - 27, 31.03.2022
https://doi.org/10.31197/atnaa.927938

Abstract

This paper concerned with study the existence and uniqueness of solutions for
a class of fractional differential equations with boundary conditions
involving the Riesz-Caputo type fractional derivatives. We apply the methods
of functional analysis such that the uniqueness result is established using
the Banach contraction principle, whereas existence results are obtained using
Schaefer's and Krasnoslkii's fixed theorems. Some examples are given to
illustrate our acquired results.

References

  • [1] S. Abbas, M. Benchohra, G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.
  • [2] S. Abbas, M. Benchohra, G.M. N'Guérékata, Advanced Fractional Di?erential and Integral Equations, Nova Science Publishers, New York, 2015.
  • [3] T. Abdeljawad, On conformable fractional calculus, Journal of computational and Applied Mathematics 279(2015), 57-66.
  • [4] M.S. Abdo, T. Abdeljawad, K.D. Kucche, M.A. Alqudah , S. M. Ali, M.B. Jeelani, On nonlinear pantograph fractional di?erential equations with Atangana- Baleanu-Caputo derivative, Advances in Di?erence Equations 1(2021), 1-17.
  • [5] M.S. Abdo, T. Abdeljawad, S.M. Ali, K. Shah, On fractional boundary value problems involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions, Advances in Difference Equations 1(2021), 1-21.
  • [6] M.S. Abdo, T. Abdeljawad, S.M. Ali, K. Shah, F. Jarad, Existence of positive solutions for weighted fractional order di?erential equations, Chaos Solitons Fractals 141(2020), 110341.
  • [7] M.S. Abdo, Further results on the existence of solutions for generalized fractional quadratic functional integral equations, Journal of Mathematical Analysis and Modeling 1(1)(2020), 33-46.
  • [8] M.S. Abdo, T. Abdeljawad, K. Shah, F. Jarad, Study of Impulsive Problems Under Mittag-Leffler Power Law, Heliyon 6(10)(2020), e05109.
  • [9] O.P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, Journal Phys 40(2007), 6287-6303.
  • [10] B. Ahmad, S.K. Ntouyas, A. Alsaedi, On fractional differential inclusions with anti-periodic type integral boundary con- ditions, Boundary Value Problem 82(2013).
  • [11] B. Ahmad, S.K. Ntouyas, Existence results for fractional differential inclusions with Erdelyi-Kober fractional integral conditions, Analele Universitatii" Ovidius" Constanta-Seria Matematica 25(2) (2017), 5-24.
  • [12] B. Ahmad, V. Otero-Espinar, Existence of solutions for fractional differential inclusions with antiperiodic boundary con- ditions, Boundary Value Problem (2009), 625347.
  • [13] M.A. Almalahi, S.K. Panchal, Some existence and stability results for ψ-Hilfer fractional implicit differential equation with periodic conditions, Journal of Mathematical Analysis and Modeling, 1(1)(2020), 1-19.
  • [14] R. Almeida, Fractional variational problems with the Riesz-Caputo derivative, Appl.Math.Lett. 25(2012)142-148.
  • [15] R. Almeida, Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul. 44 (2017), 460-481.
  • [16] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci. 20(2)(2016), 763-69.
  • [17] M. Benchohra, J.E. Lazreg, Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Stud. Univ. Babes-Bolyai Math. 62(1)(2017) 27-38.
  • [18] A. Boutiara, M.S. Abdo, M. Benbachir, Existence results for ψ-Caputo fractional neutral functional integro-differential equations with finite delay, Turk J Math (2020) 44: 2380-2401.
  • [19] A. Boutiara, Mixed fractional differential equation with nonlocal conditions in Banach spaces, Journal of Mathematical Modeling 9(3)(2021), 451-463.
  • [20] A. Boutiara, K. Guerbati, M. Benbachir, Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces, AIMS Mathematics 5(1)(2020), 259-272.
  • [21] A. Boutiara, M. Benbachir, K. Guerbati, Caputo Type Fractional Differential Equation with Nonlocal Erdélyi-Kober Type Integral Boundary Conditions in Banach Spaces, Surveys in Mathematics and its Applications 15(2020): 399-418.
  • [22] A. Boutiara, M. Benbachir, K. Guerbati, Measure Of Noncompactness for Nonlinear Hilfer Fractional Differential Equation in Banach Spaces, Ikonion Journal of Mathematics 1(2)(2019).
  • [23] Y.K. Chang, J.J. Nieto, Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Modelling 49 (2009), 605-609.
  • [24] G.Y. Chuan, Z. Jun, W.C. Guo, Positive solution of fractional diferential equations with the Riesz space derivative, Applied Mathematics Letters,Elsevier 95(2019)59-64.
  • [25] M. Caputo, M. Fabrizio, A new Definition of Fractional Derivative without Singular Kernel, Progress in Fractional Differ- entiation and Applications. 1(2) (2015), 73-85.
  • [26] F.L. Chen, A.P. Chen, X. Wu, Anti-periodic boundary value problems with Riesz-Caputo derivative, Adv. Differ. Equ. 2019(2019), 119.
  • [27] C. Fulai, C. Anping, W. Xia, Anti-periodic boundary value problems with the Riesz-Caputo derivative, Advanced in Di?erence equations.Springer(2019).
  • [28] M.S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, F. Jarad, Existence of positive solutions for weighted fractional order di?erential equations, Chaos Solitons Fractals 141(2020), 110341.
  • [29] M.A. Abdulwasaa, M.S. Abdo, K. Shah, T.A. Nofal, S.K. Panchal, S.V. Kawale, A. H. Abdel-Aty, Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India, Results in Physics, 20(2021), 103702.
  • [30] M. Iqbal, K. Shah, R.A. Khan, On using coupled fixed-point theorems for mild solutions to coupled system of multipoint boundary value problems of nonlinear fractional hybrid pantograph differential equations, Math. Meth. Appl. Sci. 44(10), (2021), 8113-8124.
  • [31] C. Fulai, B. Dumitru, W.C. Guo, Existence results of fractional differential equations with the Riesz-Caputo derivative, Eur. phys. J. special topics 226,4341-4325.
  • [32] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Difference Equ. 8(142) (2012).
  • [33] U.N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl. 6(4) (2014), 1-15.
  • [34] A.A. Kilbas, M.H. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B. V, Amsterdam, 2006.
  • [35] F. Mainardi, Fractional calculus: Some basic problem in continuum and statistical mechanics, Fractals and fractional calculus in continuum mechanics. Springer. Vienna (1997).
  • [36] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999).
  • [37] J.V.C. Sousa, E.C.D. Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simula 60 (2018), 72-91.
  • [38] J.E.N. Valdes, P.M. Guzmán , M.L.M. Bittencurt, A note on the qualitative behavior of some nonlinear local improper conformable differential equations, Journal of Fractional Calculus and Nonlinear Systems, 1(1)(2020), 13-20.
  • [39] H.A. Wahash, S.K. Panchal, Positive solutions for generalized Caputo fractional differential equations using lower and upper solutions method, Journal of Fractional Calculus and Nonlinear Systems 1(1) (2020), 1-12.
  • [40] F. Xu, Fractional boundary value problems with integral and Anti-periodic boundary conditions, Bull.Malys.Math.Sci.Soc. 39, 571-587.
Year 2022, Volume: 6 Issue: 1, 14 - 27, 31.03.2022
https://doi.org/10.31197/atnaa.927938

Abstract

References

  • [1] S. Abbas, M. Benchohra, G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.
  • [2] S. Abbas, M. Benchohra, G.M. N'Guérékata, Advanced Fractional Di?erential and Integral Equations, Nova Science Publishers, New York, 2015.
  • [3] T. Abdeljawad, On conformable fractional calculus, Journal of computational and Applied Mathematics 279(2015), 57-66.
  • [4] M.S. Abdo, T. Abdeljawad, K.D. Kucche, M.A. Alqudah , S. M. Ali, M.B. Jeelani, On nonlinear pantograph fractional di?erential equations with Atangana- Baleanu-Caputo derivative, Advances in Di?erence Equations 1(2021), 1-17.
  • [5] M.S. Abdo, T. Abdeljawad, S.M. Ali, K. Shah, On fractional boundary value problems involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions, Advances in Difference Equations 1(2021), 1-21.
  • [6] M.S. Abdo, T. Abdeljawad, S.M. Ali, K. Shah, F. Jarad, Existence of positive solutions for weighted fractional order di?erential equations, Chaos Solitons Fractals 141(2020), 110341.
  • [7] M.S. Abdo, Further results on the existence of solutions for generalized fractional quadratic functional integral equations, Journal of Mathematical Analysis and Modeling 1(1)(2020), 33-46.
  • [8] M.S. Abdo, T. Abdeljawad, K. Shah, F. Jarad, Study of Impulsive Problems Under Mittag-Leffler Power Law, Heliyon 6(10)(2020), e05109.
  • [9] O.P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, Journal Phys 40(2007), 6287-6303.
  • [10] B. Ahmad, S.K. Ntouyas, A. Alsaedi, On fractional differential inclusions with anti-periodic type integral boundary con- ditions, Boundary Value Problem 82(2013).
  • [11] B. Ahmad, S.K. Ntouyas, Existence results for fractional differential inclusions with Erdelyi-Kober fractional integral conditions, Analele Universitatii" Ovidius" Constanta-Seria Matematica 25(2) (2017), 5-24.
  • [12] B. Ahmad, V. Otero-Espinar, Existence of solutions for fractional differential inclusions with antiperiodic boundary con- ditions, Boundary Value Problem (2009), 625347.
  • [13] M.A. Almalahi, S.K. Panchal, Some existence and stability results for ψ-Hilfer fractional implicit differential equation with periodic conditions, Journal of Mathematical Analysis and Modeling, 1(1)(2020), 1-19.
  • [14] R. Almeida, Fractional variational problems with the Riesz-Caputo derivative, Appl.Math.Lett. 25(2012)142-148.
  • [15] R. Almeida, Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul. 44 (2017), 460-481.
  • [16] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci. 20(2)(2016), 763-69.
  • [17] M. Benchohra, J.E. Lazreg, Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Stud. Univ. Babes-Bolyai Math. 62(1)(2017) 27-38.
  • [18] A. Boutiara, M.S. Abdo, M. Benbachir, Existence results for ψ-Caputo fractional neutral functional integro-differential equations with finite delay, Turk J Math (2020) 44: 2380-2401.
  • [19] A. Boutiara, Mixed fractional differential equation with nonlocal conditions in Banach spaces, Journal of Mathematical Modeling 9(3)(2021), 451-463.
  • [20] A. Boutiara, K. Guerbati, M. Benbachir, Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces, AIMS Mathematics 5(1)(2020), 259-272.
  • [21] A. Boutiara, M. Benbachir, K. Guerbati, Caputo Type Fractional Differential Equation with Nonlocal Erdélyi-Kober Type Integral Boundary Conditions in Banach Spaces, Surveys in Mathematics and its Applications 15(2020): 399-418.
  • [22] A. Boutiara, M. Benbachir, K. Guerbati, Measure Of Noncompactness for Nonlinear Hilfer Fractional Differential Equation in Banach Spaces, Ikonion Journal of Mathematics 1(2)(2019).
  • [23] Y.K. Chang, J.J. Nieto, Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Modelling 49 (2009), 605-609.
  • [24] G.Y. Chuan, Z. Jun, W.C. Guo, Positive solution of fractional diferential equations with the Riesz space derivative, Applied Mathematics Letters,Elsevier 95(2019)59-64.
  • [25] M. Caputo, M. Fabrizio, A new Definition of Fractional Derivative without Singular Kernel, Progress in Fractional Differ- entiation and Applications. 1(2) (2015), 73-85.
  • [26] F.L. Chen, A.P. Chen, X. Wu, Anti-periodic boundary value problems with Riesz-Caputo derivative, Adv. Differ. Equ. 2019(2019), 119.
  • [27] C. Fulai, C. Anping, W. Xia, Anti-periodic boundary value problems with the Riesz-Caputo derivative, Advanced in Di?erence equations.Springer(2019).
  • [28] M.S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, F. Jarad, Existence of positive solutions for weighted fractional order di?erential equations, Chaos Solitons Fractals 141(2020), 110341.
  • [29] M.A. Abdulwasaa, M.S. Abdo, K. Shah, T.A. Nofal, S.K. Panchal, S.V. Kawale, A. H. Abdel-Aty, Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India, Results in Physics, 20(2021), 103702.
  • [30] M. Iqbal, K. Shah, R.A. Khan, On using coupled fixed-point theorems for mild solutions to coupled system of multipoint boundary value problems of nonlinear fractional hybrid pantograph differential equations, Math. Meth. Appl. Sci. 44(10), (2021), 8113-8124.
  • [31] C. Fulai, B. Dumitru, W.C. Guo, Existence results of fractional differential equations with the Riesz-Caputo derivative, Eur. phys. J. special topics 226,4341-4325.
  • [32] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Difference Equ. 8(142) (2012).
  • [33] U.N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl. 6(4) (2014), 1-15.
  • [34] A.A. Kilbas, M.H. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B. V, Amsterdam, 2006.
  • [35] F. Mainardi, Fractional calculus: Some basic problem in continuum and statistical mechanics, Fractals and fractional calculus in continuum mechanics. Springer. Vienna (1997).
  • [36] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999).
  • [37] J.V.C. Sousa, E.C.D. Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simula 60 (2018), 72-91.
  • [38] J.E.N. Valdes, P.M. Guzmán , M.L.M. Bittencurt, A note on the qualitative behavior of some nonlinear local improper conformable differential equations, Journal of Fractional Calculus and Nonlinear Systems, 1(1)(2020), 13-20.
  • [39] H.A. Wahash, S.K. Panchal, Positive solutions for generalized Caputo fractional differential equations using lower and upper solutions method, Journal of Fractional Calculus and Nonlinear Systems 1(1) (2020), 1-12.
  • [40] F. Xu, Fractional boundary value problems with integral and Anti-periodic boundary conditions, Bull.Malys.Math.Sci.Soc. 39, 571-587.
There are 40 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Abdellatif Boutiara 0000-0002-6032-4694

Naas Adjimi

Maamar Benbachır 0000-0003-3519-1153

Mohammed Abdo 0000-0001-9085-324X

Publication Date March 31, 2022
Published in Issue Year 2022 Volume: 6 Issue: 1

Cite