Multiple Nonnegative Solutions for a Class of Fourth-Order BVPs Via a New Topological Approach
Year 2022,
Volume: 6 Issue: 3, 390 - 404, 30.09.2022
Salim Benslimane
Svetlin Georgiev
,
Karima Mebarki
Abstract
In this paper, we study a class of fourth-order boundary value problems with integral boundary conditions.
The nonlinearity may have time-singularity and change sign. Moreover, it satisfies general polynomial growth conditions.
A new topological approach is applied to prove the existence of at least two nonnegative classical solutions.
An example of application illustrates the existence result.
References
- [1] R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75-88.
- [2] R. P. Agarwal, On fourth order boundary value problems arising in beam analysis, Differential and integral equations 2
(1989), 91-110.
- [3] R. P. Agarwal, S. Kelevedjiev, On the solvability of fourth-order two-point boundary value problems, Mathematics 2020,
8, 603.
- [4] K. Bachouche, A. Benmezai, S. Djebali, Positive solutions to semi-positone fourth-order ϕ-Laplacian BVPs, Positivity 21
(2017), 193-212.
- [5] S. Benslimane, S. Djebali, K. Mebarki, On the ?xed point index for sums of operators, Fixed Point Theory, 23(2022), no.
1, 143-162.
- [6] S. Djebali, T. Moussaoui, R. Precup, Fourth order p-laplacian nonlinear systems via the vector version of the Krasnosel'skii's
?xed point theorem, Mediterr. J. Math 6 (2009), no 4, 447-460.
- [7] S. Djebali, K. Mebarki, Fixed point index theory for perturbation of expansive mappings by k-set contraction, Top. Meth.
Nonli. Anal., 54 (2019), no 2A, 613-640.
- [8] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, Boston, Mass, USA, vol. 5, (1988).
- [9] C. Gupta, Existence and uniqueness results for the bending of an elastic beam equation at resonnance, Journal of Mathe-
matical Analysis and Applications, 135(1988), 208-225.
- [10] L. Lin, Y. Liu, D. Zhao, Multiple solutions for a class of nonliner fourth-order boundary value problems, Symmetry 2020,
12, 1989.
- [11] B. Liu, Positive solutions of the fourth-order two point boundary value problems, Appl. Math. Comput, 148 (2004), no. 2,
407-420.
- [12] Y. Liu, D. O'Regan, Multiplicity results for a class of fourth order semipositone m-point boundary value problems, Appl.
Anal. 91(2012), 911-921.
- [13] R. Ma, H. Wang, On the existence of positive solutions of fourth-order ordinary di?erential equation, Anal. Appl. 59(1-
4)(1995), 225-231.
- [14] S. Reich, Fixed points of condensing functions, J. Math. Anal. Appl. 41 (1973) 460-467.
- [15] Q. Wang, Y. Guo, Y. Ji, Positive solutions for fourth?order nonlinear differential equation with integral boundary condi-
tions, Discrete Dynamics in Nature and Society, Vol. 2013, Article ID 684962, 10 pages.
- [16] T. Xiang, R. Yuan, A class of expansive-type Krasnosel'skii fixed point theorems, Nonlinear Anal. 71 (2009), no. 7-8,
3229-3239.
- [17] C. Zhai, C. Hiang, Existence of nontrivial solutions for a nonlinear fourth-order boundary value problem via iterative
method, J. Nonlinear Sci. Appl. 9 (2016), 4295-4304.
- [18] Y. Zhu, P. Weng, Multiple positive solutions for a fourth-order boundary value problem, Bol. Soc. Parana. Mat, 21(2003),
9-19.
Year 2022,
Volume: 6 Issue: 3, 390 - 404, 30.09.2022
Salim Benslimane
Svetlin Georgiev
,
Karima Mebarki
References
- [1] R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75-88.
- [2] R. P. Agarwal, On fourth order boundary value problems arising in beam analysis, Differential and integral equations 2
(1989), 91-110.
- [3] R. P. Agarwal, S. Kelevedjiev, On the solvability of fourth-order two-point boundary value problems, Mathematics 2020,
8, 603.
- [4] K. Bachouche, A. Benmezai, S. Djebali, Positive solutions to semi-positone fourth-order ϕ-Laplacian BVPs, Positivity 21
(2017), 193-212.
- [5] S. Benslimane, S. Djebali, K. Mebarki, On the ?xed point index for sums of operators, Fixed Point Theory, 23(2022), no.
1, 143-162.
- [6] S. Djebali, T. Moussaoui, R. Precup, Fourth order p-laplacian nonlinear systems via the vector version of the Krasnosel'skii's
?xed point theorem, Mediterr. J. Math 6 (2009), no 4, 447-460.
- [7] S. Djebali, K. Mebarki, Fixed point index theory for perturbation of expansive mappings by k-set contraction, Top. Meth.
Nonli. Anal., 54 (2019), no 2A, 613-640.
- [8] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, Boston, Mass, USA, vol. 5, (1988).
- [9] C. Gupta, Existence and uniqueness results for the bending of an elastic beam equation at resonnance, Journal of Mathe-
matical Analysis and Applications, 135(1988), 208-225.
- [10] L. Lin, Y. Liu, D. Zhao, Multiple solutions for a class of nonliner fourth-order boundary value problems, Symmetry 2020,
12, 1989.
- [11] B. Liu, Positive solutions of the fourth-order two point boundary value problems, Appl. Math. Comput, 148 (2004), no. 2,
407-420.
- [12] Y. Liu, D. O'Regan, Multiplicity results for a class of fourth order semipositone m-point boundary value problems, Appl.
Anal. 91(2012), 911-921.
- [13] R. Ma, H. Wang, On the existence of positive solutions of fourth-order ordinary di?erential equation, Anal. Appl. 59(1-
4)(1995), 225-231.
- [14] S. Reich, Fixed points of condensing functions, J. Math. Anal. Appl. 41 (1973) 460-467.
- [15] Q. Wang, Y. Guo, Y. Ji, Positive solutions for fourth?order nonlinear differential equation with integral boundary condi-
tions, Discrete Dynamics in Nature and Society, Vol. 2013, Article ID 684962, 10 pages.
- [16] T. Xiang, R. Yuan, A class of expansive-type Krasnosel'skii fixed point theorems, Nonlinear Anal. 71 (2009), no. 7-8,
3229-3239.
- [17] C. Zhai, C. Hiang, Existence of nontrivial solutions for a nonlinear fourth-order boundary value problem via iterative
method, J. Nonlinear Sci. Appl. 9 (2016), 4295-4304.
- [18] Y. Zhu, P. Weng, Multiple positive solutions for a fourth-order boundary value problem, Bol. Soc. Parana. Mat, 21(2003),
9-19.