Year 2022,
Volume: 6 Issue: 4, 547 - 564, 30.12.2022
Ilyes Sedka
,
Samir Lemıta
,
Mohamed Zine Aıssaouı
References
- [1] K.E. Atkinson, The numerical solution of integral equations of the second kind, Cambridge University Press, Cambridge.
(1997).
- [2] M.C. Bounaya, S. Lemita, M. Ghiat and M.Z. Aissaoui, On a nonlinear integro-di?erential equation of Fredholm type, Int.
J. Comput. Sci. Math. 13 (2021) 194-205.
- [3] Z.K. Eshkuvatov, A. Akhmedov, N.N. Long and O. Sha?q, Approximate solutionn of a nonllinear system of integral
equations using modi?ed Newton-Kantorovich method, J. Fund. Appl. Sci. 6:2 (2010) 154-159.
- [4] Z.K. Eshkuvatov, H.H. Hameed and N.N. Long, One dimensional nonlinear integral operator with Newton-Kantorovich
method, J. King. Saud. Univ. Sci. 28 (2016) 172-177.
- [5] L. Grammont, Nonlinear integral equations of the second kind: a new version of Nyström method. Numer. Funct. Anal.
Optim. 34 (2013) 496-515.
- [6] H.H. Hameed, Z.K. Eshkuvatov, Z. Muminov and A. Kilicman, Solving system of nonlinear integral equations by Newton-
Kantorovich method, AIP. Conf. Proc. 1605 (2014) 518-523.
- [7] A. Hamoud, N.M. Mohammed and K. Ghadle, Existence and uniqueness results for Volterra-Fredholm integro-Differential
equations, Adv. Theory Nonlinear Anal. Appl. 4 (2020) 361-372.
- [8] I.A. Rus, Some variants of contraction principle in the case of operators with Volterra property: step by step contraction
principle, Adv. Theory Nonlinear Anal. Appl. 3 (2019) 111-120.
- [9] J. Saberi-Nadjafi and M. Heidari, Solving nonlinear integral equations in the Urysohn form by Newton-Kantorovich-
quadrature method, Comput. Math. Appl. 60 (2010) 2058-2065.
- [10] J. Stoer and R. Bulirsch, Introduction to numerical analysis, Springer Science and Business Media. (2013).
- [11] H.R. Thieme, A model for the spatial spread of an epidemic, J. Math. Biol. 4 (1977) 337-351.
- [12] A.N. Tynda, D.N. Sidorov and N.A. Sidorov, Numeric solution of systems of nonlinear Volterra integral equations of the
first kind with discontinuous kernels, arXiv preprint arXiv:1910.08941. (2019).
Linearization-Discretization process to solve systems of nonlinear Fredholm integral equations in an infinite-dimensional context
Year 2022,
Volume: 6 Issue: 4, 547 - 564, 30.12.2022
Ilyes Sedka
,
Samir Lemıta
,
Mohamed Zine Aıssaouı
Abstract
In this paper, we propose a different way for solving systems of nonlinear Fredholm integral equations of the second kind. We construct our new strategy in two steps, through beginning with the linearization phase of the system of Fredholm integral equations by applying Newton method, then we pass to the discretization phase for some involved integral operator using Nystr\"{o}m method. The convergence analysis of our new method is proved under some necessary conditions. At last, a numerical application to approach a nonlinear Fredholm integro-differential equation by using this new process is taken to confirm its advantage.
References
- [1] K.E. Atkinson, The numerical solution of integral equations of the second kind, Cambridge University Press, Cambridge.
(1997).
- [2] M.C. Bounaya, S. Lemita, M. Ghiat and M.Z. Aissaoui, On a nonlinear integro-di?erential equation of Fredholm type, Int.
J. Comput. Sci. Math. 13 (2021) 194-205.
- [3] Z.K. Eshkuvatov, A. Akhmedov, N.N. Long and O. Sha?q, Approximate solutionn of a nonllinear system of integral
equations using modi?ed Newton-Kantorovich method, J. Fund. Appl. Sci. 6:2 (2010) 154-159.
- [4] Z.K. Eshkuvatov, H.H. Hameed and N.N. Long, One dimensional nonlinear integral operator with Newton-Kantorovich
method, J. King. Saud. Univ. Sci. 28 (2016) 172-177.
- [5] L. Grammont, Nonlinear integral equations of the second kind: a new version of Nyström method. Numer. Funct. Anal.
Optim. 34 (2013) 496-515.
- [6] H.H. Hameed, Z.K. Eshkuvatov, Z. Muminov and A. Kilicman, Solving system of nonlinear integral equations by Newton-
Kantorovich method, AIP. Conf. Proc. 1605 (2014) 518-523.
- [7] A. Hamoud, N.M. Mohammed and K. Ghadle, Existence and uniqueness results for Volterra-Fredholm integro-Differential
equations, Adv. Theory Nonlinear Anal. Appl. 4 (2020) 361-372.
- [8] I.A. Rus, Some variants of contraction principle in the case of operators with Volterra property: step by step contraction
principle, Adv. Theory Nonlinear Anal. Appl. 3 (2019) 111-120.
- [9] J. Saberi-Nadjafi and M. Heidari, Solving nonlinear integral equations in the Urysohn form by Newton-Kantorovich-
quadrature method, Comput. Math. Appl. 60 (2010) 2058-2065.
- [10] J. Stoer and R. Bulirsch, Introduction to numerical analysis, Springer Science and Business Media. (2013).
- [11] H.R. Thieme, A model for the spatial spread of an epidemic, J. Math. Biol. 4 (1977) 337-351.
- [12] A.N. Tynda, D.N. Sidorov and N.A. Sidorov, Numeric solution of systems of nonlinear Volterra integral equations of the
first kind with discontinuous kernels, arXiv preprint arXiv:1910.08941. (2019).