Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 1, 189 - 194, 31.03.2023

Abstract

References

  • [1] V.V. Aseev, Generalized angles in Ptolemaic Möbius structures, Siberian Math. J. 59 (2018) 189-201.
  • [2] V.V. Aseev, Multivalued quasimöbius mappings on Riemann sphere, Siberian Math. J. 64 (2023) (in print).
  • [3] G.M. Goluzin, Geometric Theory of Functions of a Complex Variable, Translations of Math. Monographs 26, American Math. Society, Providence - Rhode Island 02904 (1969).
  • [4] H.P. Künzi, Quasikonforme Abbildungen, Spinger-Verlag, Berlin-Göttingen-Heidelberg (1960).
  • [5] O. Lehto and K.I. Virtanen, Quasikonforme Abbildungen, Springer-Verlag, Berlin-Heidelberg-New York (1965).
  • [6] O. Martio, S. Rickman, and J. Väisälä, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 448 (1969) 1-40.
  • [7] O. Martio, S. Rickman, and J. Väisälä, Distortion and singulaities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 465 (1970) 1-13.
  • [8] Yu.G. Reshetnyak, Space Mappings with Bounded Distortion, Translations of Math. Monographs 73, American Math. Society, Providence - Rhode Island (1989).
  • [9] S. Rickman, Characterization of quasiconformal arcs, Ann. Acad. Sci. Fenn. Ser. A I Math. 395 (1966) 1-30.
  • [10] M. Vuorinen, Quadruples and spatial quasiconformal mappings, Math. Z. 205 (1990) 617-628.

The distortion of tetrads under quasimeromorphic mappings of Riemann sphere

Year 2023, Volume: 7 Issue: 1, 189 - 194, 31.03.2023

Abstract

On the Riemann sphere, we consider the ptolemaic characteristic of a four of non-empty
pairwise non-intersecting compact subsets (generalized tetrad, or generalized angle).
We obtain an estimate for distortion of this characteristic under the inverse to a
K-quasimeromorphic mapping of the Riemann sphere which takes each of its values at
no more then N different points. The distortion function in this estimate depends only
on K and N. In the case K=1, it is an essentially new property of complex rational
functions.

References

  • [1] V.V. Aseev, Generalized angles in Ptolemaic Möbius structures, Siberian Math. J. 59 (2018) 189-201.
  • [2] V.V. Aseev, Multivalued quasimöbius mappings on Riemann sphere, Siberian Math. J. 64 (2023) (in print).
  • [3] G.M. Goluzin, Geometric Theory of Functions of a Complex Variable, Translations of Math. Monographs 26, American Math. Society, Providence - Rhode Island 02904 (1969).
  • [4] H.P. Künzi, Quasikonforme Abbildungen, Spinger-Verlag, Berlin-Göttingen-Heidelberg (1960).
  • [5] O. Lehto and K.I. Virtanen, Quasikonforme Abbildungen, Springer-Verlag, Berlin-Heidelberg-New York (1965).
  • [6] O. Martio, S. Rickman, and J. Väisälä, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 448 (1969) 1-40.
  • [7] O. Martio, S. Rickman, and J. Väisälä, Distortion and singulaities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 465 (1970) 1-13.
  • [8] Yu.G. Reshetnyak, Space Mappings with Bounded Distortion, Translations of Math. Monographs 73, American Math. Society, Providence - Rhode Island (1989).
  • [9] S. Rickman, Characterization of quasiconformal arcs, Ann. Acad. Sci. Fenn. Ser. A I Math. 395 (1966) 1-30.
  • [10] M. Vuorinen, Quadruples and spatial quasiconformal mappings, Math. Z. 205 (1990) 617-628.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Vladislav Aseev This is me

Publication Date March 31, 2023
Published in Issue Year 2023 Volume: 7 Issue: 1

Cite