Research Article
BibTex RIS Cite

ELECTROTHERMAL CHARACTERIZATION OF PHASE-CHANGE FILMS AND DEVICES

Year 2017, Volume: 18 Issue: 5, 1057 - 1065, 31.12.2017

Abstract

The reversible changes in the optical properties of the
phase-change materials have made the rewritable optical storage possible which
has revolutionized the dissemination of data since 1990s. For the last two
decades, the phase-change materials have been studied extensively for its
applications as nonvolatile memory elements (phase-change memory (PCM)
devices). While the PCM devices were initially considered as replacements for
the flash memory, today they promise a universal memory acting as the main
memory and the storage unit. Here we demonstrate a simple alternative to study
phase-change films and devices for further fundamental studies. The films are
deposited using a single sputtering target and the devices are formed using
single lithography, deposition and liftoff steps. The electrical resistivity of
the films and devices are characterized in a temperature range varying from
room temperature to 250 °C. Finally, microscale GST wires are amorphized by
melting using self-heating and quenching.

References

  • [1] Cil K, Dirisaglik F, Adnane L, Wennberg M, King A, Faraclas A, Akbulut MB, Zhu Y, Lam C, Gokirmak A, Silva H. Electrical Resistivity of Liquid Ge2Sb2Te5 Based on Thin-Film and Nanoscale Device Measurements. IEEE Trans. Electron Devices 2013; 60: 433–437.
  • [2] Kolobov AV, Fons P, Frenkel AI, Ankudinov AL, Tominaga J, Uruga T. Understanding the phase-change mechanism of rewritable optical media. Nat. Mater. 2004; 3: 703–708.
  • [3] Wong HSP, Raoux S, Kim S, Liang J, Reifenberg JP, Rajendran B, Asheghi M, Goodson KE. Phase Change Memory. Proc. IEEE 2010; 98: 2201–2227.
  • [4] Burr GW, Breitwisch MJ, Franceschini M, Garetto D, Gopalakrishnan K, Jackson B, Kurdi B, Lam C, Lastras LA, Padilla A, Rajendran B, Raoux S, Shenoy RS. Phase change memory technology. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2010; 28: 223–262.
  • [5] Bakan G, Gerislioglu B, Dirisaglik F, Jurado Z, Sullivan L, Dana A, Lam C, Gokirmak A, Silva H. Extracting the temperature distribution on a phase-change memory cell during crystallization. J. Appl. Phys. 2016; 120: 164504.
  • [6] Xiong F, Liao AD, Estrada D, Pop E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 2011; 332: 568–570.
  • [7] Dirisaglik F, Bakan G, Jurado Z, Muneer S, Akbulut M, Rarey J, Sullivan L, Wennberg M, King A, Zhang L, Nowak R, Lam C, Silva H, Gokirmak A. High speed, high temperature electrical characterization of phase change materials: metastable phases, crystallization dynamics, and resistance drift. Nanoscale 2015; 7: 16625–16630.
  • [8] Gokce A, Cinar I, Ozdemir SC, Cogulu E, Stipe B, Katine JA, Ozatay O. Toward Multiple-Bit-Per-Cell Memory Operation With Stable Resistance Levels in Phase Change Nanodevices. IEEE Trans. Electron Devices 2016; 63: 3103–3108.
  • [9] Kolobov AV, Haines J, Pradel A, Ribes M, Fons P, Tominaga J, Katayama Y, Hammouda T, Uruga T, Agarwal R. Pressure-induced site-selective disordering of Ge2Sb2Te5: a new insight into phase-change optical recording. Phys. Rev. Lett. 2006; 97: 35701.
  • [10] Oosthoek JLM, Attenborough K, Hurkx GAM, Jedema FJ, Gravesteijn DJ, Kooi BJ. Evolution of cell resistance, threshold voltage and crystallization temperature during cycling of line-cell phase-change random access memory. J. Appl. Phys. 2011; 110: 24505.
Year 2017, Volume: 18 Issue: 5, 1057 - 1065, 31.12.2017

Abstract

References

  • [1] Cil K, Dirisaglik F, Adnane L, Wennberg M, King A, Faraclas A, Akbulut MB, Zhu Y, Lam C, Gokirmak A, Silva H. Electrical Resistivity of Liquid Ge2Sb2Te5 Based on Thin-Film and Nanoscale Device Measurements. IEEE Trans. Electron Devices 2013; 60: 433–437.
  • [2] Kolobov AV, Fons P, Frenkel AI, Ankudinov AL, Tominaga J, Uruga T. Understanding the phase-change mechanism of rewritable optical media. Nat. Mater. 2004; 3: 703–708.
  • [3] Wong HSP, Raoux S, Kim S, Liang J, Reifenberg JP, Rajendran B, Asheghi M, Goodson KE. Phase Change Memory. Proc. IEEE 2010; 98: 2201–2227.
  • [4] Burr GW, Breitwisch MJ, Franceschini M, Garetto D, Gopalakrishnan K, Jackson B, Kurdi B, Lam C, Lastras LA, Padilla A, Rajendran B, Raoux S, Shenoy RS. Phase change memory technology. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2010; 28: 223–262.
  • [5] Bakan G, Gerislioglu B, Dirisaglik F, Jurado Z, Sullivan L, Dana A, Lam C, Gokirmak A, Silva H. Extracting the temperature distribution on a phase-change memory cell during crystallization. J. Appl. Phys. 2016; 120: 164504.
  • [6] Xiong F, Liao AD, Estrada D, Pop E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 2011; 332: 568–570.
  • [7] Dirisaglik F, Bakan G, Jurado Z, Muneer S, Akbulut M, Rarey J, Sullivan L, Wennberg M, King A, Zhang L, Nowak R, Lam C, Silva H, Gokirmak A. High speed, high temperature electrical characterization of phase change materials: metastable phases, crystallization dynamics, and resistance drift. Nanoscale 2015; 7: 16625–16630.
  • [8] Gokce A, Cinar I, Ozdemir SC, Cogulu E, Stipe B, Katine JA, Ozatay O. Toward Multiple-Bit-Per-Cell Memory Operation With Stable Resistance Levels in Phase Change Nanodevices. IEEE Trans. Electron Devices 2016; 63: 3103–3108.
  • [9] Kolobov AV, Haines J, Pradel A, Ribes M, Fons P, Tominaga J, Katayama Y, Hammouda T, Uruga T, Agarwal R. Pressure-induced site-selective disordering of Ge2Sb2Te5: a new insight into phase-change optical recording. Phys. Rev. Lett. 2006; 97: 35701.
  • [10] Oosthoek JLM, Attenborough K, Hurkx GAM, Jedema FJ, Gravesteijn DJ, Kooi BJ. Evolution of cell resistance, threshold voltage and crystallization temperature during cycling of line-cell phase-change random access memory. J. Appl. Phys. 2011; 110: 24505.
There are 10 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Gokhan Bakan

Publication Date December 31, 2017
Published in Issue Year 2017 Volume: 18 Issue: 5

Cite

APA Bakan, G. (2017). ELECTROTHERMAL CHARACTERIZATION OF PHASE-CHANGE FILMS AND DEVICES. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 18(5), 1057-1065. https://doi.org/10.18038/aubtda.304357
AMA Bakan G. ELECTROTHERMAL CHARACTERIZATION OF PHASE-CHANGE FILMS AND DEVICES. AUJST-A. December 2017;18(5):1057-1065. doi:10.18038/aubtda.304357
Chicago Bakan, Gokhan. “ELECTROTHERMAL CHARACTERIZATION OF PHASE-CHANGE FILMS AND DEVICES”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18, no. 5 (December 2017): 1057-65. https://doi.org/10.18038/aubtda.304357.
EndNote Bakan G (December 1, 2017) ELECTROTHERMAL CHARACTERIZATION OF PHASE-CHANGE FILMS AND DEVICES. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18 5 1057–1065.
IEEE G. Bakan, “ELECTROTHERMAL CHARACTERIZATION OF PHASE-CHANGE FILMS AND DEVICES”, AUJST-A, vol. 18, no. 5, pp. 1057–1065, 2017, doi: 10.18038/aubtda.304357.
ISNAD Bakan, Gokhan. “ELECTROTHERMAL CHARACTERIZATION OF PHASE-CHANGE FILMS AND DEVICES”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18/5 (December 2017), 1057-1065. https://doi.org/10.18038/aubtda.304357.
JAMA Bakan G. ELECTROTHERMAL CHARACTERIZATION OF PHASE-CHANGE FILMS AND DEVICES. AUJST-A. 2017;18:1057–1065.
MLA Bakan, Gokhan. “ELECTROTHERMAL CHARACTERIZATION OF PHASE-CHANGE FILMS AND DEVICES”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 18, no. 5, 2017, pp. 1057-65, doi:10.18038/aubtda.304357.
Vancouver Bakan G. ELECTROTHERMAL CHARACTERIZATION OF PHASE-CHANGE FILMS AND DEVICES. AUJST-A. 2017;18(5):1057-65.