Research Article
BibTex RIS Cite

A NUMERICAL SOLUTION OF THE ADVECTION-DIFFUSION EQUATION BY USING EXTENDED CUBIC B-SPLINE FUNCTIONS

Year 2018, Volume: 19 Issue: 2, 347 - 355, 31.03.2018
https://doi.org/10.18038/aubtda.336116

Abstract

In this paper, numerical solution of the
advection-diffusion equation is obtained by using extended cubic B-spline
functions. For space discretization, the extended cubic B-spline Galerkin
method is used to integrate the advection-diffusion equation and for time
discretization, the Crank-Nicolson method is employed to obtain the fully
integrated advection-diffusion equation. The maximum error norm has been used
to show the accuracy of the method. Robustness of the suggested method is shown
by studying some classical test problems and comparing the results with some
earlier ones.

References

  • [1] Ahmad Z. Numerical solution for advection-diffusion equation with spatially variable coefficients. ISH Journal of Hydraulic Engineering 2000, 1: 46-54.
  • [2] Ahmad Z, Kothyari UC. Time-line cubic spline interpolation scheme for solution of advection equation. Comput Fluids 2001, 30: 737-752.
  • [3] Boztosun I, Charafi A, Zerroukat M, Djidjeli K. Thin-plate spline radial basis function scheme for advection-diffusion problems. Electronic Journal of Boundary Elements. 2002, 2: 267-282.
  • [4] Bulut H, Akturk T, Ucar Y. The solution of advection diffusion equation by the finite elements method. International Journal of Basic&Applied Sciences IJBAS-IJENS 2013, 13: 267-282.
  • [5] Dag I, Irk D, Tombul M. Least-squares finite element method for advection-diffusion equation. Appl Math Comput 2006, 173: 554-565.
  • [6] Dag I, Canivar A, Sahin A. Taylor-Galerkin method for advection-diffusion equation. Kybernetes 2011, 40: 762-777.
  • [7] Dhawan S, Rawat S, Kumar S, Kapoor S. Solution of advection diffusion equation using finite element method. In: Modelling simulation and applied optimization international conference (ICMSAO); 19-21 April 2011; Kuala Lumpur, Malaysia. IEEE. pp. 1-4.
  • [8] Dhawan S, Kapoor S, Kumar S. Numerical method for advection-diffusion equation using FEM and B-splines. Journal of Computational Science 2012, 3: 429-443.
  • [9] Funaro D, Pontrelli G. Spline approximation of advection-diffusion problems using upwind type collocation nodes. J Comput Appl Math 1999, 10: 141-153.
  • [10] Gardner LRT, Dag I. A numerical solution of the advection-diffusion equation using B-spline finite element. In: International AMSE Conference, Systems Analysis, Control & Design; 4-6 July 1994; Lyon, France. pp. 109-116.
  • [11] Gardner LRT, Gardner GAS, Netter E. A new B-spline finite element method for the advection-diffusion equation. In: International Colloquium on Differential equations; 18-23 August 1996, Plovdiv, Bulgaria. pp. 123-152.
  • [12] Goh J, Majid AA, Ismail AIMd. A comparison of some splines-based methods for the one-dimensional heat equation. World Academy of Science, Engineering and Technology 2010, 70: 858-861.
  • [13] Goh J, Majid AA, Ismail AIMd. Ismail, Cubic B-spline collocation method for one-dimensional heat and advection-diffusion equations. Journal of Applied Mathematics 2012, 2012: 1-8.
  • [14] Irk D, Dag I, Tombul M. Extended cubic B-spline solution of the advection-diffusion equation. KSCE Journal of Civil Engineers 2015, 19: 929-934.
  • [15] Kapoor S, Dhawan S. B-spline finite element technique for advection-diffusion equation. International Journal of Applied Mathematics and Mechanics 2010, 6: 75-94.
  • [16] Korkmaz A, Dag I. Cubic B-spline differential quadrature methods for the advection-diffusion equation. Int J Numer Method H 2012, 22: 1021-1036.
  • [17] Okamoto S, Sakai K, Matsumoto K, Horiuchi K, Kobayashi K. Development and application of a three-dimensional Taylor-Galerkin numerical model for air quality simulation near roadway tunnel portals. J Appl Meteor 1998, 37: 1010-1025.
  • [18] Pepper DW, Kern CD, Long PEJr. Modeling the dispersion of atmospheric pollution using cubic splines and chapeau functions. Atmos Environ1979, 13: 223-237.
  • [19] Szymkiewicz R. Solution of the advection-diffusion equation using the spline function and finite elements. Commun Numer Meth En 1993, 9: 197-206.
  • [20] Tsai TL, Chiang SW, Yang JC, Examination of characteristics method with cubic interpolation for advection-diffusion equation. Comput Fluids 2006, 35: 1217-1227.
  • [21] Thongmoon M, Mckibbin R. A comparison of some numerical methods for the advection-diffusion equation. Res Lett Int Math Sci 2006, 10: 49-62.
  • [22] Thongmoon M, Thangmanee S, Mckibbin R. A comparison of splines interpolation with standard finite methods for one-dimensional advection-diffusion equation. Int J Mod Phys C 2008, 9: 1291-1304.
  • [23] Zoppou C, Roberts S, Renka RJ. Exponential spline interpolation in characteristic based scheme for solving the advection-diffusion equation. Int J Numer Meth Fl 2000, 33: 429-452.
  • [24] Hamid NNA, Majid AA, Ismail AIMd. Extended cubic B-spline interpolation method applied to linear two-point boundary value problems. World Academy of Science, Engineering and Technology 2010, 38: 566-568.
  • [25] Hamid NNA, Majid AA, Ismail AIMd. Extended cubic B-spline method for linear two-point boundary value problems. Sains Malaysiana 2011, 40: 1285-1290.
  • [26] Dag I, Irk D, Sari M. The extended cubic B-spline algorithm for a modified regularized long wave equation. Chinese Phys B 2013, 22: 1-6.
  • [27] Goh J, Majid AA, Ismail AIMd. Extended cubic uniform B-spline for a class of singular boundary value problems. Science Asia 2011, 37: 79-82.
  • [28] Sankaranarayanan S, Shankar NJ, Cheong HF. Three-dimensional finite difference model for transport of conservative pollutants. Ocean Eng 1998, 25: 425-442.
Year 2018, Volume: 19 Issue: 2, 347 - 355, 31.03.2018
https://doi.org/10.18038/aubtda.336116

Abstract

References

  • [1] Ahmad Z. Numerical solution for advection-diffusion equation with spatially variable coefficients. ISH Journal of Hydraulic Engineering 2000, 1: 46-54.
  • [2] Ahmad Z, Kothyari UC. Time-line cubic spline interpolation scheme for solution of advection equation. Comput Fluids 2001, 30: 737-752.
  • [3] Boztosun I, Charafi A, Zerroukat M, Djidjeli K. Thin-plate spline radial basis function scheme for advection-diffusion problems. Electronic Journal of Boundary Elements. 2002, 2: 267-282.
  • [4] Bulut H, Akturk T, Ucar Y. The solution of advection diffusion equation by the finite elements method. International Journal of Basic&Applied Sciences IJBAS-IJENS 2013, 13: 267-282.
  • [5] Dag I, Irk D, Tombul M. Least-squares finite element method for advection-diffusion equation. Appl Math Comput 2006, 173: 554-565.
  • [6] Dag I, Canivar A, Sahin A. Taylor-Galerkin method for advection-diffusion equation. Kybernetes 2011, 40: 762-777.
  • [7] Dhawan S, Rawat S, Kumar S, Kapoor S. Solution of advection diffusion equation using finite element method. In: Modelling simulation and applied optimization international conference (ICMSAO); 19-21 April 2011; Kuala Lumpur, Malaysia. IEEE. pp. 1-4.
  • [8] Dhawan S, Kapoor S, Kumar S. Numerical method for advection-diffusion equation using FEM and B-splines. Journal of Computational Science 2012, 3: 429-443.
  • [9] Funaro D, Pontrelli G. Spline approximation of advection-diffusion problems using upwind type collocation nodes. J Comput Appl Math 1999, 10: 141-153.
  • [10] Gardner LRT, Dag I. A numerical solution of the advection-diffusion equation using B-spline finite element. In: International AMSE Conference, Systems Analysis, Control & Design; 4-6 July 1994; Lyon, France. pp. 109-116.
  • [11] Gardner LRT, Gardner GAS, Netter E. A new B-spline finite element method for the advection-diffusion equation. In: International Colloquium on Differential equations; 18-23 August 1996, Plovdiv, Bulgaria. pp. 123-152.
  • [12] Goh J, Majid AA, Ismail AIMd. A comparison of some splines-based methods for the one-dimensional heat equation. World Academy of Science, Engineering and Technology 2010, 70: 858-861.
  • [13] Goh J, Majid AA, Ismail AIMd. Ismail, Cubic B-spline collocation method for one-dimensional heat and advection-diffusion equations. Journal of Applied Mathematics 2012, 2012: 1-8.
  • [14] Irk D, Dag I, Tombul M. Extended cubic B-spline solution of the advection-diffusion equation. KSCE Journal of Civil Engineers 2015, 19: 929-934.
  • [15] Kapoor S, Dhawan S. B-spline finite element technique for advection-diffusion equation. International Journal of Applied Mathematics and Mechanics 2010, 6: 75-94.
  • [16] Korkmaz A, Dag I. Cubic B-spline differential quadrature methods for the advection-diffusion equation. Int J Numer Method H 2012, 22: 1021-1036.
  • [17] Okamoto S, Sakai K, Matsumoto K, Horiuchi K, Kobayashi K. Development and application of a three-dimensional Taylor-Galerkin numerical model for air quality simulation near roadway tunnel portals. J Appl Meteor 1998, 37: 1010-1025.
  • [18] Pepper DW, Kern CD, Long PEJr. Modeling the dispersion of atmospheric pollution using cubic splines and chapeau functions. Atmos Environ1979, 13: 223-237.
  • [19] Szymkiewicz R. Solution of the advection-diffusion equation using the spline function and finite elements. Commun Numer Meth En 1993, 9: 197-206.
  • [20] Tsai TL, Chiang SW, Yang JC, Examination of characteristics method with cubic interpolation for advection-diffusion equation. Comput Fluids 2006, 35: 1217-1227.
  • [21] Thongmoon M, Mckibbin R. A comparison of some numerical methods for the advection-diffusion equation. Res Lett Int Math Sci 2006, 10: 49-62.
  • [22] Thongmoon M, Thangmanee S, Mckibbin R. A comparison of splines interpolation with standard finite methods for one-dimensional advection-diffusion equation. Int J Mod Phys C 2008, 9: 1291-1304.
  • [23] Zoppou C, Roberts S, Renka RJ. Exponential spline interpolation in characteristic based scheme for solving the advection-diffusion equation. Int J Numer Meth Fl 2000, 33: 429-452.
  • [24] Hamid NNA, Majid AA, Ismail AIMd. Extended cubic B-spline interpolation method applied to linear two-point boundary value problems. World Academy of Science, Engineering and Technology 2010, 38: 566-568.
  • [25] Hamid NNA, Majid AA, Ismail AIMd. Extended cubic B-spline method for linear two-point boundary value problems. Sains Malaysiana 2011, 40: 1285-1290.
  • [26] Dag I, Irk D, Sari M. The extended cubic B-spline algorithm for a modified regularized long wave equation. Chinese Phys B 2013, 22: 1-6.
  • [27] Goh J, Majid AA, Ismail AIMd. Extended cubic uniform B-spline for a class of singular boundary value problems. Science Asia 2011, 37: 79-82.
  • [28] Sankaranarayanan S, Shankar NJ, Cheong HF. Three-dimensional finite difference model for transport of conservative pollutants. Ocean Eng 1998, 25: 425-442.
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Melis Zorsahin Gorgulu

İdris Dag

Sumeyye Dogan This is me

Dursun Irk

Publication Date March 31, 2018
Published in Issue Year 2018 Volume: 19 Issue: 2

Cite

APA Zorsahin Gorgulu, M., Dag, İ., Dogan, S., Irk, D. (2018). A NUMERICAL SOLUTION OF THE ADVECTION-DIFFUSION EQUATION BY USING EXTENDED CUBIC B-SPLINE FUNCTIONS. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 19(2), 347-355. https://doi.org/10.18038/aubtda.336116
AMA Zorsahin Gorgulu M, Dag İ, Dogan S, Irk D. A NUMERICAL SOLUTION OF THE ADVECTION-DIFFUSION EQUATION BY USING EXTENDED CUBIC B-SPLINE FUNCTIONS. AUJST-A. June 2018;19(2):347-355. doi:10.18038/aubtda.336116
Chicago Zorsahin Gorgulu, Melis, İdris Dag, Sumeyye Dogan, and Dursun Irk. “A NUMERICAL SOLUTION OF THE ADVECTION-DIFFUSION EQUATION BY USING EXTENDED CUBIC B-SPLINE FUNCTIONS”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 19, no. 2 (June 2018): 347-55. https://doi.org/10.18038/aubtda.336116.
EndNote Zorsahin Gorgulu M, Dag İ, Dogan S, Irk D (June 1, 2018) A NUMERICAL SOLUTION OF THE ADVECTION-DIFFUSION EQUATION BY USING EXTENDED CUBIC B-SPLINE FUNCTIONS. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 19 2 347–355.
IEEE M. Zorsahin Gorgulu, İ. Dag, S. Dogan, and D. Irk, “A NUMERICAL SOLUTION OF THE ADVECTION-DIFFUSION EQUATION BY USING EXTENDED CUBIC B-SPLINE FUNCTIONS”, AUJST-A, vol. 19, no. 2, pp. 347–355, 2018, doi: 10.18038/aubtda.336116.
ISNAD Zorsahin Gorgulu, Melis et al. “A NUMERICAL SOLUTION OF THE ADVECTION-DIFFUSION EQUATION BY USING EXTENDED CUBIC B-SPLINE FUNCTIONS”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 19/2 (June 2018), 347-355. https://doi.org/10.18038/aubtda.336116.
JAMA Zorsahin Gorgulu M, Dag İ, Dogan S, Irk D. A NUMERICAL SOLUTION OF THE ADVECTION-DIFFUSION EQUATION BY USING EXTENDED CUBIC B-SPLINE FUNCTIONS. AUJST-A. 2018;19:347–355.
MLA Zorsahin Gorgulu, Melis et al. “A NUMERICAL SOLUTION OF THE ADVECTION-DIFFUSION EQUATION BY USING EXTENDED CUBIC B-SPLINE FUNCTIONS”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 19, no. 2, 2018, pp. 347-55, doi:10.18038/aubtda.336116.
Vancouver Zorsahin Gorgulu M, Dag İ, Dogan S, Irk D. A NUMERICAL SOLUTION OF THE ADVECTION-DIFFUSION EQUATION BY USING EXTENDED CUBIC B-SPLINE FUNCTIONS. AUJST-A. 2018;19(2):347-55.