BibTex RIS Kaynak Göster

The Real Matrix Representations of Semi-Octonions

Yıl 2016, , 99 - 112, 25.08.2016
https://doi.org/10.20290/btdb.04545

Öz

Rosenfeld’s book [6] is a wonderful introduction to the normed division algebras: the real numbers, the complex
numbers, the quaternions, and the octonions. A brief introduction of the semi-octonions is provided in this book. In
[3], we studied some fundamental properties of the semi-octonions, Os, and show that the set of unit semi-octonions
is a subgroup of Os. In this paper, we give a complete investigation to real matrix representations of semi-octonions,
and consider a relation between the powers of these matrices. The De Moivre's formula implies that there are
uncountably many matrices of the unit semi-octonions A satisfying An = I8 for every integer n ≥ 3.

Kaynakça

  • Agrawal O P. Hamilton Operators and Dual number-quaternions in Spatial Kinematics. Mechanism and machine theory 1987; 22(6): 569-575.
  • Jafari M. On the properties of quasi-quaternions algebra, Communications faculty of science University Ankara, Series A, 63(1), 2014.
  • Jafari M. A viewpoint on semi-octonion algebra. Journal of Selçuk university natural and applied Science 2015; 4(4): 46-53.
  • Kansu M E, Tanisli M, Demir S. Electromagnetic energy conservation with complex octonions, Turkish journal of physics 2012; 36: 438–445.
  • Mortazaasl H, Jafari M. A study on semi-quaternions algebra in semi-Euclidean 4-space, Mathematical sciences and applications E-Notes2013; 1(2): 20-27. [6] Rosenfeld B A. Geometry of Lie Groups, Kluwer Academic Publishers, Dordrecht , 1997

THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS

Yıl 2016, , 99 - 112, 25.08.2016
https://doi.org/10.20290/btdb.04545

Öz

Rosenfeld’in kitabında normlu bölüm cebirleri, reel sayılar, kompleks sayılar, kuaterniyonlar ve oktonyonlara harika bir giriş yapılmıştır [6]. Yarı-oktonyonlara bir ufak giriş bu kitapta bulunabilir. Biz daha önce yarı-oktonyonların (Os) bazı temel özelliklerini inceledik ve gösterdik ki birim yarı-oktonyonların kümesi, O’nin bir alt-kümesidir [3]. Bu makalede, yarıoktonyonların reel matris gösterimini inceleyip aralarındaki bazı ilişkileri verdik. De-Moivre formülü, birim yarı-oktonyonlara karşılık gelen sayılamaz sayıda A matrisinin her n ≥ 3 tam sayısı için An = I8 şeklinde var olduğunu söylemektedir

Kaynakça

  • Agrawal O P. Hamilton Operators and Dual number-quaternions in Spatial Kinematics. Mechanism and machine theory 1987; 22(6): 569-575.
  • Jafari M. On the properties of quasi-quaternions algebra, Communications faculty of science University Ankara, Series A, 63(1), 2014.
  • Jafari M. A viewpoint on semi-octonion algebra. Journal of Selçuk university natural and applied Science 2015; 4(4): 46-53.
  • Kansu M E, Tanisli M, Demir S. Electromagnetic energy conservation with complex octonions, Turkish journal of physics 2012; 36: 438–445.
  • Mortazaasl H, Jafari M. A study on semi-quaternions algebra in semi-Euclidean 4-space, Mathematical sciences and applications E-Notes2013; 1(2): 20-27. [6] Rosenfeld B A. Geometry of Lie Groups, Kluwer Academic Publishers, Dordrecht , 1997
Toplam 5 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makalesi
Yazarlar

Mehdi Jafari

Yayımlanma Tarihi 25 Ağustos 2016
Yayımlandığı Sayı Yıl 2016

Kaynak Göster

APA Jafari, M. (2016). THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler, 4(2), 99-112. https://doi.org/10.20290/btdb.04545
AMA Jafari M. THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS. AUBTD-B. Ekim 2016;4(2):99-112. doi:10.20290/btdb.04545
Chicago Jafari, Mehdi. “THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 4, sy. 2 (Ekim 2016): 99-112. https://doi.org/10.20290/btdb.04545.
EndNote Jafari M (01 Ekim 2016) THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 4 2 99–112.
IEEE M. Jafari, “THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS”, AUBTD-B, c. 4, sy. 2, ss. 99–112, 2016, doi: 10.20290/btdb.04545.
ISNAD Jafari, Mehdi. “THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 4/2 (Ekim 2016), 99-112. https://doi.org/10.20290/btdb.04545.
JAMA Jafari M. THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS. AUBTD-B. 2016;4:99–112.
MLA Jafari, Mehdi. “THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler, c. 4, sy. 2, 2016, ss. 99-112, doi:10.20290/btdb.04545.
Vancouver Jafari M. THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS. AUBTD-B. 2016;4(2):99-112.