BibTex RIS Kaynak Göster

RELATIONS BETWEEN BLUES IN TWO LINEAR MODELS

Yıl 2013, Cilt: 2 Sayı: 2, 103 - 109, 06.05.2015

Öz

123456789_910

Kaynakça

  • Baksalary, J. K. (2004). An Elementary Development of The Equation Characterizing Best Linear Unbiased Estimators. Linear Algebra and Applications, 388:3-6.
  • Baksalary, J. K., Mathew, T. (1986). Linear Sufficiency and Completeness in an Incorrectly Specified General Gauss-Markov Model. Sankhyā, 48:169-180.
  • Baksalary, J. K., Mathew, T. (1990). Rank Invariance Criterion and Its Application to The Unified Theory of Least Squares. Linear Algebra and Its Applications, 127:393-401.
  • Hall, F. J., Meyer, C. D., Jr. (1975). Generalized Inverses of The Fundamental Bordered Matrix used in Linear Estimation. Sankhyā, Series. A 37:428-438. [Corrigendum (1978), 40:399.]
  • Harville, D. A. (1997). Matrix Algebra From a Statistician's Perspective. New York: Springer.
  • Haslett, S. J., Puntanen, S. (2010). Effect of Adding Regressors on The Equality of The BLUEs under Two Linear Models Journal of Statistical Planning and Inference, 140:104-110.
  • Hauke J., Markiewicz A., Puntanen S. (2012). Comparing The BLUEs under Two Linear Models. Communications in Statistics: Theory and Methods, 41:2405-2418.
  • Isotalo, J., Puntanen, S., Styan, G. P. H. (2008a). A Useful Matrix Decomposition and Its Statistical Applications in Linear Regression. Communications in Statistics Theory and Methods, 37:1436- 1457.
  • Isotalo, J., Puntanen, S., Styan, G. P. H. (2008b). The BLUE’s Covariance Matrix Revisited: A Review Journal Statistical of Planning Inference, 138:2722-2737.
  • Magnus, J. R., Neudecker, H. (1988). Matrix Differential Calculus with Applications in Statistics and Econometrics. New York: Wiley.
  • Mathew, T., Bhimasankaram, P. (1983). On The Robustness of LRT in Singular Linear Models. Sankhyā, Series. A, 45:301-312.
  • Mitra, S. K., Moore, B. J. (1973). Gauss-Markov Estimation with an Incorrect Dispersion Matrix. Sankhyā, Series A, 35:139-152.
  • Rao, C. R. (1971). Unified Theory of Linear Estimation. Sankhyā, Series A, 33:371-394. [Corrigendum: (1972), 34:194,477.]
  • Rao, C. R. (1972). A Note on The IPM Method in The Unified Theory of Linear Estimation. Sankhyā, Series A, 34:285-288.
  • Rao, C. R. (1973). Representations of Best Linear Unbiased Estimators in The Gauss-Markov Model With a Singular Dispersion Matrix. Journal of Multivariate Analysis, 3:276-292.
  • Tian, Y. (2009a). On an Additive Decomposition of The BLUE in A Multiple Partitioned Linear Model. Journal of Multivariate Analysis, 100:767-776.
  • Tian, Y. (2009b). On Equalities for BLUEs under Misspecified Gauss-Markov Models. Acta Mathematica Sinica English Series, (25) 11:1907-1920.

İKİ LİNEER MODELDEKİ BLUE'LAR ARASINDAKİ İLİŞKİLER

Yıl 2013, Cilt: 2 Sayı: 2, 103 - 109, 06.05.2015

Öz

Kaynakça

  • Baksalary, J. K. (2004). An Elementary Development of The Equation Characterizing Best Linear Unbiased Estimators. Linear Algebra and Applications, 388:3-6.
  • Baksalary, J. K., Mathew, T. (1986). Linear Sufficiency and Completeness in an Incorrectly Specified General Gauss-Markov Model. Sankhyā, 48:169-180.
  • Baksalary, J. K., Mathew, T. (1990). Rank Invariance Criterion and Its Application to The Unified Theory of Least Squares. Linear Algebra and Its Applications, 127:393-401.
  • Hall, F. J., Meyer, C. D., Jr. (1975). Generalized Inverses of The Fundamental Bordered Matrix used in Linear Estimation. Sankhyā, Series. A 37:428-438. [Corrigendum (1978), 40:399.]
  • Harville, D. A. (1997). Matrix Algebra From a Statistician's Perspective. New York: Springer.
  • Haslett, S. J., Puntanen, S. (2010). Effect of Adding Regressors on The Equality of The BLUEs under Two Linear Models Journal of Statistical Planning and Inference, 140:104-110.
  • Hauke J., Markiewicz A., Puntanen S. (2012). Comparing The BLUEs under Two Linear Models. Communications in Statistics: Theory and Methods, 41:2405-2418.
  • Isotalo, J., Puntanen, S., Styan, G. P. H. (2008a). A Useful Matrix Decomposition and Its Statistical Applications in Linear Regression. Communications in Statistics Theory and Methods, 37:1436- 1457.
  • Isotalo, J., Puntanen, S., Styan, G. P. H. (2008b). The BLUE’s Covariance Matrix Revisited: A Review Journal Statistical of Planning Inference, 138:2722-2737.
  • Magnus, J. R., Neudecker, H. (1988). Matrix Differential Calculus with Applications in Statistics and Econometrics. New York: Wiley.
  • Mathew, T., Bhimasankaram, P. (1983). On The Robustness of LRT in Singular Linear Models. Sankhyā, Series. A, 45:301-312.
  • Mitra, S. K., Moore, B. J. (1973). Gauss-Markov Estimation with an Incorrect Dispersion Matrix. Sankhyā, Series A, 35:139-152.
  • Rao, C. R. (1971). Unified Theory of Linear Estimation. Sankhyā, Series A, 33:371-394. [Corrigendum: (1972), 34:194,477.]
  • Rao, C. R. (1972). A Note on The IPM Method in The Unified Theory of Linear Estimation. Sankhyā, Series A, 34:285-288.
  • Rao, C. R. (1973). Representations of Best Linear Unbiased Estimators in The Gauss-Markov Model With a Singular Dispersion Matrix. Journal of Multivariate Analysis, 3:276-292.
  • Tian, Y. (2009a). On an Additive Decomposition of The BLUE in A Multiple Partitioned Linear Model. Journal of Multivariate Analysis, 100:767-776.
  • Tian, Y. (2009b). On Equalities for BLUEs under Misspecified Gauss-Markov Models. Acta Mathematica Sinica English Series, (25) 11:1907-1920.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Nesrin Güler

Yayımlanma Tarihi 6 Mayıs 2015
Yayımlandığı Sayı Yıl 2013 Cilt: 2 Sayı: 2

Kaynak Göster

APA Güler, N. (2015). RELATIONS BETWEEN BLUES IN TWO LINEAR MODELS. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler, 2(2), 103-109.
AMA Güler N. RELATIONS BETWEEN BLUES IN TWO LINEAR MODELS. AUBTD-B. Mayıs 2015;2(2):103-109.
Chicago Güler, Nesrin. “RELATIONS BETWEEN BLUES IN TWO LINEAR MODELS”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 2, sy. 2 (Mayıs 2015): 103-9.
EndNote Güler N (01 Mayıs 2015) RELATIONS BETWEEN BLUES IN TWO LINEAR MODELS. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 2 2 103–109.
IEEE N. Güler, “RELATIONS BETWEEN BLUES IN TWO LINEAR MODELS”, AUBTD-B, c. 2, sy. 2, ss. 103–109, 2015.
ISNAD Güler, Nesrin. “RELATIONS BETWEEN BLUES IN TWO LINEAR MODELS”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 2/2 (Mayıs 2015), 103-109.
JAMA Güler N. RELATIONS BETWEEN BLUES IN TWO LINEAR MODELS. AUBTD-B. 2015;2:103–109.
MLA Güler, Nesrin. “RELATIONS BETWEEN BLUES IN TWO LINEAR MODELS”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler, c. 2, sy. 2, 2015, ss. 103-9.
Vancouver Güler N. RELATIONS BETWEEN BLUES IN TWO LINEAR MODELS. AUBTD-B. 2015;2(2):103-9.