Araştırma Makalesi
BibTex RIS Kaynak Göster

TOZ ENJEKSİYON KALIPLAMA İLE ÜRETİLMİŞ TUNGSTEN KARBÜR PARÇALARDA BAĞLAYICI GİDERME SÜRESİNİN VE PARÇA BOYUTLARININ AĞIRLIK KAYBINA ETKİSİNİN ARAŞTIRILMASI

Yıl 2018, Cilt: 6 Sayı: 1, 75 - 83, 30.04.2018
https://doi.org/10.20290/aubtdb.331088

Öz

Toz enjeksiyon
kalıplama (TEK), plastik enjeksiyon kalıplama ve geleneksel toz metalürjisi
tekniklerinin kombinasyonundan ortaya çıkmış bir yöntemdir. Bu metot besleme
stoğunun hazırlanması, besleme stoğunun kalıba enjekte edilmesi, bağlayıcı ayrıştırma
işlemi ve sinterleme olmak üzere dört temel adımdan meydana gelmektedir. TEK’te
bağlayıcı ayrıştırma işlemi, sinterleme sonrasında parçada elde edilecek nihai
mukavemete etki etmektedir. Aynı zamanda bağlayıcı ayrıştırma süresinin
uzunluğu maliyeti arttırmaktadır.  Bundan
dolayı bağlayıcı ayrıştırma işlemi esnasında meydana gelen optimum ağırlık
kaybının tespit edilmesi önemlidir. Bu çalışmada üç farklı kalınlıkta (4,3;
9,75 ve 12 mm) ve uzunlukta (15, 14, ve 11 mm) numuneler WC-% 9Co besleme
stoğundan TEK yöntemi ile üretilmiştir. Daha sonra numuneler 24, 48, 60 ve 72
saat olmak üzere dört farklı sürede, etanol kullanılarak kimyasal bağlayıcı
ayrıştırma işlemine tabi tutulmuştur. Deneyler sonucunda parçanın kalınlığı,
hacmi, yüzey alanı/hacim (Ay/V) oranı ve bağlayıcı ayrıştırma süresinin ağırlık
kaybına etkisi tespit edilmiştir. Çalışma sonucunda ham mukavemetli WC-% 9Co
parçalarda yüzey alanı/hacim (Ay/V) oranı arttıkça ağırlık kaybının da arttığı,
kalınlık ve hacmin artması ağırlık kaybını azalttığı tespit edilmiştir. Etanol
ortamında ve 60°C sıcaklıkta bağlayıcı ayrıştırma işlemi gerçekleştirilen
numunelerde optimum sürenin 60 saat olduğu belirlenmiştir.

Kaynakça

  • [1] German, R.M., Powder injection molding. Cambridge Univ. Press1990.
  • [2] Hwang, K.-S. Fundamentals of debinding processes in powder injection molding. Reviews in particulate Materials 1996; 4: 71-104.
  • [3] Karataş, Çetin; Sarıtaş, S. Toz Enjeksiyon Kalıplama: Bir Yüksek Teknoloji İmalat Metodu. Journal of Faculty of Engineering and Architecture of Gazi University 1998; 13.2: 193.
  • [4] Lin, S. and R.M. German, Extraction debinding of injection molded parts by condensed solvent. Powder Metall. Int. 1989; 21(5): p. 19-24.
  • [5] Billmeyer, F.W., Textbook of Polymer Science, John Wiley & Sons. INC, New York, 1971.
  • [6] Cheng, Jigui, et al. Fabrication of W–20wt.% Cu alloys by powder injection molding. Journal of Materials Processing Technology 2010; 210.1: 137-142.
  • [7] Chıkwanda, Hilda; Machaka, Ronald. A study of solvent debinding variables on Ti6Al4V green bodies 2014.
  • [8] Thomas-Vielma, P., et al. Production of alumina parts by powder injection molding with a binder system based on high density polyethylene. Journal of the European Ceramic Society 2008; 28.4: 763-771.
  • [9] KAMARUDIN, Nur Hafizah; IBRAHIM, Mohd Halim Irwan. Effect of Immerse Temperature and Time on Solvent Debinding Process of Stainless Steel 316L Metal Injection Molding. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing 2017; p. 012016.
  • [10] Amın, Azriszul Mohd; Ibrahim, Mohd Halim Irwan; Mustafa, Rosli Asmawiand Najwa. Effect Of Solvent Debındıng Varıables On Green Compact Wıth Dıfferent Bınder Formulatıon. 2006.
  • [11] LI, Yimin, et al. Critical thickness in binder removal process for injection molded compacts. Materials Science and Engineering: A, 2003, 362.1: 292-299.
  • [12] Westcot, E., C. Binet Andrandall, and M. German, In situ dimensional change, mass loss and mechanisms for solvent debinding of powder injection moulded components. Powder metallurgy 2003; 46(1): p. 61-67.
  • [13] LIU, Wei, et al. Novel fabrication of injection-moulded ceramic parts with large section via partially water-debinding method. Journal of the European Ceramic Society 2012; 32.10: 2187-2191.
  • [14] Ani, Sarizal Md, et al. Binder removal via a two-stage debinding process for ceramic injection molding parts. Ceramics International 2014; 40.2: 2819-2824.
  • [15] LIU, Wensheng, et al. Fabrication of 93W–Ni–Fe alloy large-diameter rods by powder extrusion molding. International Journal of Refractory Metals and Hard Materials 2014; 42: 233-239.
  • [16] Yang, X. F., et al. Dynamics of water debinding in ceramic injection moulding. Advances in Applied Ceramics 2009; 108.5: 295-300.
  • [17] ZAINON, Nooraizedfiza, et al. Solvent Extraction Characterization on Injection Molding of Mg Alloy. In: MATEC Web of Conferences. EDP Sciences 2017; p. 01050.
  • [18] Heng, S. Y., et al. Micro-powder injection molding (μPIM) of tungsten carbide. International Journal of Refractory Metals and Hard Materials 2014; 45: 189-195.
  • [19] Oliveira, Ricardo VB, et al. Ceramic injection moulding: influence of specimen dimensions and temperature on solvent debinding kinetics. Journal of materials processing technology 2005; 160.2: 213-220.
  • [20] Fan, Yang-Liang, et al. Minimum amount of binder removal required during solvent debinding of powder-injection-molded compacts. Metallurgical and Materials Transactions A 2009; 40.4: 768-779.

The investigation of the effects of debinding time and dimensions of sample on parts produced from tungsten carbide by powder injection molding

Yıl 2018, Cilt: 6 Sayı: 1, 75 - 83, 30.04.2018
https://doi.org/10.20290/aubtdb.331088

Öz

Powder
injection molding (PIM)  is a method that
is emerged from the combination of conventional powder metallurgy technique and
plastic injection molding. This method, comprises four basic steps including of
preparation of the feedstock, injecting into the mold,the binder removal
process and sintering. The binder removal process in PIM effects the ultimate
strength achieved in part after sintering. Also if the debinding time is selected
as higher than optimum level, production cost will increase, obviously. Therefore,
determination of loss of mass that occurs during binder removal process is
significant. In this study, tungsten carbide (WC) samples with three different
diameters (4,3; 9,75 ve 12 mm)  and three
different lengths (15, 14, ve 11 mm)  were produced by PIM method. Then these
samples were subjected to chemical debinding process at four different time,
24, 48,  60 and 72 hours, respectively.
Ethanol was used as solvent in the chemical binder removal process, As a result
of experiments, the effects of sample thickness, volume, surface area/volume
ratio (Ay / V) and debinding time on weight loss were specified by
using PIM. According to the this study, as the surface area/volume ratio (Ay
/ V) is increased the weight loss will increased, while the  thickness and volume are increased, weight
loss will decreased for the green part of the feedstock. 60 hours is determined
as optimum binder removal parameters for the case of 60°C in ethanol.

Kaynakça

  • [1] German, R.M., Powder injection molding. Cambridge Univ. Press1990.
  • [2] Hwang, K.-S. Fundamentals of debinding processes in powder injection molding. Reviews in particulate Materials 1996; 4: 71-104.
  • [3] Karataş, Çetin; Sarıtaş, S. Toz Enjeksiyon Kalıplama: Bir Yüksek Teknoloji İmalat Metodu. Journal of Faculty of Engineering and Architecture of Gazi University 1998; 13.2: 193.
  • [4] Lin, S. and R.M. German, Extraction debinding of injection molded parts by condensed solvent. Powder Metall. Int. 1989; 21(5): p. 19-24.
  • [5] Billmeyer, F.W., Textbook of Polymer Science, John Wiley & Sons. INC, New York, 1971.
  • [6] Cheng, Jigui, et al. Fabrication of W–20wt.% Cu alloys by powder injection molding. Journal of Materials Processing Technology 2010; 210.1: 137-142.
  • [7] Chıkwanda, Hilda; Machaka, Ronald. A study of solvent debinding variables on Ti6Al4V green bodies 2014.
  • [8] Thomas-Vielma, P., et al. Production of alumina parts by powder injection molding with a binder system based on high density polyethylene. Journal of the European Ceramic Society 2008; 28.4: 763-771.
  • [9] KAMARUDIN, Nur Hafizah; IBRAHIM, Mohd Halim Irwan. Effect of Immerse Temperature and Time on Solvent Debinding Process of Stainless Steel 316L Metal Injection Molding. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing 2017; p. 012016.
  • [10] Amın, Azriszul Mohd; Ibrahim, Mohd Halim Irwan; Mustafa, Rosli Asmawiand Najwa. Effect Of Solvent Debındıng Varıables On Green Compact Wıth Dıfferent Bınder Formulatıon. 2006.
  • [11] LI, Yimin, et al. Critical thickness in binder removal process for injection molded compacts. Materials Science and Engineering: A, 2003, 362.1: 292-299.
  • [12] Westcot, E., C. Binet Andrandall, and M. German, In situ dimensional change, mass loss and mechanisms for solvent debinding of powder injection moulded components. Powder metallurgy 2003; 46(1): p. 61-67.
  • [13] LIU, Wei, et al. Novel fabrication of injection-moulded ceramic parts with large section via partially water-debinding method. Journal of the European Ceramic Society 2012; 32.10: 2187-2191.
  • [14] Ani, Sarizal Md, et al. Binder removal via a two-stage debinding process for ceramic injection molding parts. Ceramics International 2014; 40.2: 2819-2824.
  • [15] LIU, Wensheng, et al. Fabrication of 93W–Ni–Fe alloy large-diameter rods by powder extrusion molding. International Journal of Refractory Metals and Hard Materials 2014; 42: 233-239.
  • [16] Yang, X. F., et al. Dynamics of water debinding in ceramic injection moulding. Advances in Applied Ceramics 2009; 108.5: 295-300.
  • [17] ZAINON, Nooraizedfiza, et al. Solvent Extraction Characterization on Injection Molding of Mg Alloy. In: MATEC Web of Conferences. EDP Sciences 2017; p. 01050.
  • [18] Heng, S. Y., et al. Micro-powder injection molding (μPIM) of tungsten carbide. International Journal of Refractory Metals and Hard Materials 2014; 45: 189-195.
  • [19] Oliveira, Ricardo VB, et al. Ceramic injection moulding: influence of specimen dimensions and temperature on solvent debinding kinetics. Journal of materials processing technology 2005; 160.2: 213-220.
  • [20] Fan, Yang-Liang, et al. Minimum amount of binder removal required during solvent debinding of powder-injection-molded compacts. Metallurgical and Materials Transactions A 2009; 40.4: 768-779.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Kamran Samet

Oğuz Yılmaz Bu kişi benim

Harun Koçak

Asghar Safarian

Çetin Karataş

Yayımlanma Tarihi 30 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 1

Kaynak Göster

APA Samet, K., Yılmaz, O., Koçak, H., Safarian, A., vd. (2018). TOZ ENJEKSİYON KALIPLAMA İLE ÜRETİLMİŞ TUNGSTEN KARBÜR PARÇALARDA BAĞLAYICI GİDERME SÜRESİNİN VE PARÇA BOYUTLARININ AĞIRLIK KAYBINA ETKİSİNİN ARAŞTIRILMASI. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler, 6(1), 75-83. https://doi.org/10.20290/aubtdb.331088
AMA Samet K, Yılmaz O, Koçak H, Safarian A, Karataş Ç. TOZ ENJEKSİYON KALIPLAMA İLE ÜRETİLMİŞ TUNGSTEN KARBÜR PARÇALARDA BAĞLAYICI GİDERME SÜRESİNİN VE PARÇA BOYUTLARININ AĞIRLIK KAYBINA ETKİSİNİN ARAŞTIRILMASI. AUBTD-B. Nisan 2018;6(1):75-83. doi:10.20290/aubtdb.331088
Chicago Samet, Kamran, Oğuz Yılmaz, Harun Koçak, Asghar Safarian, ve Çetin Karataş. “TOZ ENJEKSİYON KALIPLAMA İLE ÜRETİLMİŞ TUNGSTEN KARBÜR PARÇALARDA BAĞLAYICI GİDERME SÜRESİNİN VE PARÇA BOYUTLARININ AĞIRLIK KAYBINA ETKİSİNİN ARAŞTIRILMASI”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 6, sy. 1 (Nisan 2018): 75-83. https://doi.org/10.20290/aubtdb.331088.
EndNote Samet K, Yılmaz O, Koçak H, Safarian A, Karataş Ç (01 Nisan 2018) TOZ ENJEKSİYON KALIPLAMA İLE ÜRETİLMİŞ TUNGSTEN KARBÜR PARÇALARDA BAĞLAYICI GİDERME SÜRESİNİN VE PARÇA BOYUTLARININ AĞIRLIK KAYBINA ETKİSİNİN ARAŞTIRILMASI. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 6 1 75–83.
IEEE K. Samet, O. Yılmaz, H. Koçak, A. Safarian, ve Ç. Karataş, “TOZ ENJEKSİYON KALIPLAMA İLE ÜRETİLMİŞ TUNGSTEN KARBÜR PARÇALARDA BAĞLAYICI GİDERME SÜRESİNİN VE PARÇA BOYUTLARININ AĞIRLIK KAYBINA ETKİSİNİN ARAŞTIRILMASI”, AUBTD-B, c. 6, sy. 1, ss. 75–83, 2018, doi: 10.20290/aubtdb.331088.
ISNAD Samet, Kamran vd. “TOZ ENJEKSİYON KALIPLAMA İLE ÜRETİLMİŞ TUNGSTEN KARBÜR PARÇALARDA BAĞLAYICI GİDERME SÜRESİNİN VE PARÇA BOYUTLARININ AĞIRLIK KAYBINA ETKİSİNİN ARAŞTIRILMASI”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 6/1 (Nisan 2018), 75-83. https://doi.org/10.20290/aubtdb.331088.
JAMA Samet K, Yılmaz O, Koçak H, Safarian A, Karataş Ç. TOZ ENJEKSİYON KALIPLAMA İLE ÜRETİLMİŞ TUNGSTEN KARBÜR PARÇALARDA BAĞLAYICI GİDERME SÜRESİNİN VE PARÇA BOYUTLARININ AĞIRLIK KAYBINA ETKİSİNİN ARAŞTIRILMASI. AUBTD-B. 2018;6:75–83.
MLA Samet, Kamran vd. “TOZ ENJEKSİYON KALIPLAMA İLE ÜRETİLMİŞ TUNGSTEN KARBÜR PARÇALARDA BAĞLAYICI GİDERME SÜRESİNİN VE PARÇA BOYUTLARININ AĞIRLIK KAYBINA ETKİSİNİN ARAŞTIRILMASI”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler, c. 6, sy. 1, 2018, ss. 75-83, doi:10.20290/aubtdb.331088.
Vancouver Samet K, Yılmaz O, Koçak H, Safarian A, Karataş Ç. TOZ ENJEKSİYON KALIPLAMA İLE ÜRETİLMİŞ TUNGSTEN KARBÜR PARÇALARDA BAĞLAYICI GİDERME SÜRESİNİN VE PARÇA BOYUTLARININ AĞIRLIK KAYBINA ETKİSİNİN ARAŞTIRILMASI. AUBTD-B. 2018;6(1):75-83.

Cited By