PDF EndNote BibTex RIS Cite

EVALUATION OF MICROBIAL SURVIVAL IN EXTRATERRESTRIAL ENVIRONMENTS

Year 2012, Volume 2, Issue 2, 119 - 142, 16.03.2012

Abstract

In this paper, the space environments where microbial terrestrial life could form and evolve in, were evaluted with the base of the physical and chemical properties. In addition, Earthial microbial
life formation conditions in the interstellar medium and the other planets are investigated and the survival of microorganisms in the space environments are questioned. As a result, considering the aspects of terrestrial microbial life, we suggest that the space environment and other planets could not be a habitat for Earthial microorganisms.

References

  • Alekhova, T.A., Aleksandrova, A.A., Novozhilova, T.9 D., Lysak, L.V., Zagustina, N.A. and Bezborodov, A.M. (2005). Monitoring of microbial degrad- ers in manned space stations, Prikladnaia Biokhimia Mikrobiologia 41, 435-443.
  • Atreya, S.K., Mahavy, P.R., Niemann, H.B., Wong, M.H. and Owen, T.C. (2003). Composition and origin of the atmosphere of jupiter-an update, and implications for the extrasolar giant planets, Planetary and Space Science 21, 105–112.
  • Balbus, S.A. and Hawley, J.F. (1991). A power- ful local shear instability in weakly mag- netized disks, I-Linear analysis, II- Nonlinear evolution, The Astrophysical Journal 376, 214-233. J.P. (1990). The deep atmosphere of Venus revealed by High-Resolution Nightside Spectra, Nature 345, 7, 508– 511.
  • Blöchl, E., Rachel, R., Burgraff, S., Hafenbradl, D., Jannasch, H.W. and Stetter, K.O. (1997). Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113oC, Extremophiles 1, 14–21.
  • Cameron, A.G.W. (1973). Abundances of the elements in the Solar System, Space Science Reviews 15, 137.
  • Carr, M. (1996). Water erosion on Mars and its biologic implications, Endeavour 20, 56- 60.
  • Cau, P. (2002). Formation of carbon grains in the atmosphere of IRC+10216, The role of periodic shocks in the formation of PAHs and their dimers, Astronomy and Astrophysics 392, 203.
  • Clark, D.H., McCrea, W.H. and Stephenson, F.R. (1977). Frequency of nearby super- novae and climatic and biological catas- trophes, Nature 265, 318–19.
  • Coustenis, A. and Taylor, F. (1999). Titan-the Earth like Moon, Series on Atmospheric, Oceanic and Planetary Physics 1, World ScientificWc.
  • Cronin, J.R. and Chang, S. (1993). Organic mat- ter in meteorites: molecular and isotopic analyses of the Murchison meteorite, In: Greenberg J.M. (Eds) The chemistry of life’s origins, Kluwer Academic Publish- ers, The Netherlands 209-258.
  • Cruikshank, D.P. and Roush, T.L. (2004). Observations and Laboratory Data of Planetary Organics, In; Ehrenfreund, P., et al., (Eds.) Astrobiology: Future Per- spectives, Kluwer Academic Publishers, Netherlands 149-177.
  • Davies, J.K., Roush, T.L., Cruikshank, C.P., Bartholomew, M.J. and Geballe, T.R. Owen, (1997). The detection of water ice in comet Hale-Bopp, Icarus 127, 238-245.
  • Davis, I. and Fulton, J.D. (1959). Microbiologic studies on ecologic considerations of the Martian environment, Aeromedical Reviews 2–60.
  • Dutrey, A., Guilloteau, S. and Guelin, M. (2000). Observations of the chemistry in Circumstellar Disks, Astrochemistry: From Molecular Clouds to Planetary Systems, Astronomical Society of the PaciWc, Sogwipo 415–423.
  • Fischer, D.A., Valenti, J. and Marcy, G. (2004). Stars as Suns: Activity, evolution and planets, In: A.K. Dupree, A.O. Benz (Ed), 219th Symposium of the International Astronomical Union, IAU General Assembly XXV, Sydney (Australia), July 2003. Dordrecht, Kluwer, Academic Publishers 1–12.
  • Fish, S.A., Shepherd, T.J., McGenity, T.J. and Grant, W.D. (2002). Recovery of 16S ribosomal RNA gene fragments from ancient halite, Nature 417, 432–436.
  • Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. and Giuranna, M. (2004). Detection of methane in the atmosphere of Mars Science 306, 1758–1761.
  • Friedmann, E.I. and Koriem, A.M. (1989). Life on Mars: how it disappeared (if it was ev- er there), Advances in Space Research 9, 167–172.
  • Fuzzi, S. (2002). Organic component of aerosols and clouds, EUROTRAC-2 Symposium 2002, Transformation and Chemical Transformation in the Troposphere, Garmisch-Partenkirchen (Germany).
  • Goldsmith, P.F. and Langer, W.D. (1978). Molecular cooling and thermal balance of dense interstellar clouds, The Astrophysical Journal 222, 881–895.
  • Gonzalez, G. (2005). Habitable zones in the Universe, Origins Life Evol. Biospheres 33, 555-606.
  • Hibbitts, C.A., McCord, T.B. and Hansen, G.B. (2000). Distributions of CO2 and SO2 on the surface of Callisto, Journal of Geophysical Research 105, 22541-22557.
  • Horneck, G. and Rettberg, P. (2007). Complete Course in Astrobiology, Wiley-VCH, Verlag, Weinheim 155- 295.
  • Kashefi, K. and Lovley, D.R. (2003). Extending the upper temperature limit for life, Science 301, 934.
  • Kasting, J.F., Whitmire, D.P. and Reynolds, R.T. (1993). Habitable zones around main sequence stars, Icarus 101, 108-28.
  • Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Callott, T.A. and Williams, M.W. (1984). Optical constants of organic tholins produced in a simulated Titatian atmosphere: From Soft X-Rays to Micro- wave Frequencies, Icarus 60, 127–137.
  • Kissel, J. and Krueger, F.R. (1987). The organic component in dust from comet Halley as measured by the PUMA mass spectrome- ter on board Vega 1, Nature 326, 755- 760.
  • Knauth, L.P. and Lowe, D.R. (2003). High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Super- group, South Africa. Geological Society of America Bulletin 115, 566-580.
  • Krasnopolsky, V.A. and Cruikshank, D.P. (1999). Photochemistry of Pluto’s atmos- phere and ionosphere near perihelion, Journal of Geophysical Research 104, 21979–21996.
  • Larson, H.P., Weaver, H.A., Mumma, M.J. and Drapatz, S. (1989). Airborne infrared spectroscopy of comet Wilson (1986/1) and comparisons with comet Halley, Astrophysical Journal 338, 1106-1114.
  • Lineweaver, C.H., Fenner, Y. and Gibson, B.K. (2004). The Galactic Habitable Zone and the age distribution of complex life in the Milky Way, Science 303, 59–62.
  • Llorca, J. (2004). Organic Matter in Meteorites, International Microbiology 7, 239-248.
  • Lorenz, P.R., Orlob, G.B. and Hemenway, C.L. (1969). Survival of micro-organisms in Space, Origins Life Evolution Biospheres 1, 491–500.
  • Lucas, R. and Liszt, H.S. (2002). Comparative chemistry of diffuse clouds, Astronomy and Astrophysics 384, 1054.
  • Madau, P., Ferrara, A. and Rees, M.J. (2001). Early Metal enrichment of the nitergalac- tic medium by pregalactic outflows, The Astrophysical Journal 555, 92.
  • Madigan, M.T., Martinko, J.M. and Parker, J. (2002). Brock Biology of Microorgan- isms, 10th edn. New Jersey, Prentice- Hall, Inc.
  • Maguire, W. (1977). Martian isotopic ratios and upper limits for possible minor constitu- ents as derived from Mariner 9 infrared spectrometer data, Icarus 32, 85-97.
  • Maier, J.P., Lakin, N.M., Walker, G.A.H. and Bohlender, D.A. (2001). Detection of C3 in Diffuse Interstellar Clouds, The Astro- physical Journal 553, 267.
  • Mal’tsev, V.N., Saadavi, A., Aiad, A., El’gaui, O. and Shlip, M. (1996). Microecology of nuclear reactor pool water, Radiats Biol Radioecol 36,52-57.
  • Matteucci, F. (1991). In: Greenberg, J. M. and Pirronello V. (eds), Chemistry in Space, Kluwer Academic Publishers 1–41.
  • Millar, T.J. (2004). Organic molecules in the interstellar medium, In: Ehrenfreund, et al., (eds), Astrobiology; Future Perspec- tives, Kluwer Academic Publishers 17-31.
  • Miller, S. (1953). A production of amino acids undert possible primitive Earth condi- tions, Science 117, 528–529.
  • Noll, K.S., Johnson, R.E., Lane, A.L. and Dominque, D. (1996). Detection of ozone on Ganymede, Science 273, 341-343.
  • Oró, J. (1961). Comets and the formation of bio- chemical compounds on the primitive Earth, Nature 190, 389–390.
  • Peeters, Z., Botta, O., Charnley, S.B. and Ruiterkamp, R. (2003). The astrobiology of nucleobases, The Astrophysical Jour- nal 593, L129.
  • Pizzarello, S. and Cronin, J.R. (2000). Non-racemic amino-acids in the Murray and Murchison meteorites, Geochimica Cosmochimica Acta 64, 329–338.
  • Roos-Serote, M. (2004). Organic Molecules In Planetary Atmospheres, In; Ehrenfreund, P., et al. (Eds.) Astrobiology: Future Per- spectives, Kluwer Academic Publishers, Netherlands 128.
  • Proctor, R. (1870). Other Worlds Than Ours, New York, Longmans.
  • Rothschild, L.J. (2007). Extremophiles: defining the envelope for the search for life in the universe, In: Pudritz R.E., Higgs P. and Stone J., (Eds.) Planetary Systems and the Origins of Life, Cambridge University Press, Cambridge, UK.
  • Ryder, G. (2002). Mass influx in the ancient Earth-Moon system and benign implica- tions for the origin of life on Earth, Jour- nal of Geophysical Research 107.
  • Sagan, C. and Salpeter, E.E. (1976). Particles, environments, and possible ecologies in the jovian atmosphere. Astrophysicial Journal of Supplemen Series 32, 624.
  • Sagan, C., Thompson, W.R., Carlson, R., Curnett, D. and Hord, C. (1993). A Search for Life on Earth From the Galileo Space- craft, Nature, 365, 715 - 721, doi:10.1038/365715a0
  • Sattler, B., Puxbaum, H. and Psenner, R. (2001). Bacterial growth in supercooled cloud droplets, Geophysicial Research Letters 28, 239–242.
  • Schindler, T.L. and Kasting, J.F. (2000). Synthetic spectra of simulated terrstrial atmospheres biomarker gases, Icarus 145, 262–271. possible
  • Schramm, D.N. (1998). Big Bang Theory and and primordial nuclei, SSRv 84, 167.
  • Singaravelan, N., Grishkan, I., Beharav, A., Wakamatsu, K., Ito, S. and Nevo, E. (2008). Adaptive melanin response of the soil fungus Aspergillus niger to UV radia- tion stress at ‘Evolution Canyon’, Mount Carmel, Israel, PLoS ONE, 3, e2993.
  • Stevens, A. (1936). Mans furthest aloft, National Geographic Magazine 69, 693–712.
  • Stoker, C.R., Boston, P.J., Mancinelli, R.L., Segal, W., Khare, B.N. and Sagan, C. (1999). Microbial metabolism of tholin, Icarus 85, 1, 241-256.
  • Taylor, G.R., Bailey, J.V. and Benton, E.V. (1975). Physical dosimetric evaluations in the Apollo 16 microbial response experi- ment, Life Sciences Space and Research 13, 135–141.
  • Wassmann, M., Moeller, R., Reitz, G. and Rettberg, P. (2010). Adaptation of Bacillus subtilis cells to Archean-like UV climate: Relevant hints of microbial evolution to remarkably increased radia- tion resistance, Astrobiology 10:6, 605- 615.
  • Westall, F. and Walsh, M.M. (2000). The diver- sity of fossil microorganisms in Archae- an-age rocks, In: Seckbach J. (Eds) Jour- ney to Diverse Microbial Worlds, Kluwer, Amsterdam 15-27.
  • Wiegel, J. and Adams, W.W. (1998). Thermo- philes, the keys to molecular evolution and the origin of life?, Taylor & Francis, London 339.
  • Wilde, S.A., Valley, J.W., Peck, W.H. and Graham, C.M. (2001). Evidence from detrital zircons for the existence of conti- nental crust and oceans on the Earth 4.4 Gyr ago, Nature 409, 175-178.
  • Yayanos, A.A. (1995). Microbiology to 10,500 meters in the deep sea, Annual Review of Microbiology 49, 777–805.

DÜNYA DIŞI ORTAMLARIN MİKROBİYAL YAŞANABİLİRLİK AÇISINDAN DEĞERLENDİRİLMESİ

Year 2012, Volume 2, Issue 2, 119 - 142, 16.03.2012

Abstract

Bu makalede, Dünyasal mikrobiyolojik yaşamın uzay ortamında oluşarak evrimleşebileceği öngörülen bölgeler, fiziksel ve kimyasal özellikleri ekseninde incelenmiştir. Ayrıca, yıldızlararası ortamda ve diğer gezegenlerde, Dünyasal mikrobiyolojik bir oluşumun meydana gelebilme koşulları incelenmiş ve Dünyasal mikroorganizmaların uzay ortamında yaşayabilirlikleri sorgulanmıştır. Sonuç olarak, Dünyasal mikrobiyal yaşamın nitelikleri göz önünde bulundurulduğunda, bu organizmalar için, uzay ortamının veya diğer gezegenlerin habitat olamayacağı öngörüsüne ulaşılmıştır

References

  • Alekhova, T.A., Aleksandrova, A.A., Novozhilova, T.9 D., Lysak, L.V., Zagustina, N.A. and Bezborodov, A.M. (2005). Monitoring of microbial degrad- ers in manned space stations, Prikladnaia Biokhimia Mikrobiologia 41, 435-443.
  • Atreya, S.K., Mahavy, P.R., Niemann, H.B., Wong, M.H. and Owen, T.C. (2003). Composition and origin of the atmosphere of jupiter-an update, and implications for the extrasolar giant planets, Planetary and Space Science 21, 105–112.
  • Balbus, S.A. and Hawley, J.F. (1991). A power- ful local shear instability in weakly mag- netized disks, I-Linear analysis, II- Nonlinear evolution, The Astrophysical Journal 376, 214-233. J.P. (1990). The deep atmosphere of Venus revealed by High-Resolution Nightside Spectra, Nature 345, 7, 508– 511.
  • Blöchl, E., Rachel, R., Burgraff, S., Hafenbradl, D., Jannasch, H.W. and Stetter, K.O. (1997). Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113oC, Extremophiles 1, 14–21.
  • Cameron, A.G.W. (1973). Abundances of the elements in the Solar System, Space Science Reviews 15, 137.
  • Carr, M. (1996). Water erosion on Mars and its biologic implications, Endeavour 20, 56- 60.
  • Cau, P. (2002). Formation of carbon grains in the atmosphere of IRC+10216, The role of periodic shocks in the formation of PAHs and their dimers, Astronomy and Astrophysics 392, 203.
  • Clark, D.H., McCrea, W.H. and Stephenson, F.R. (1977). Frequency of nearby super- novae and climatic and biological catas- trophes, Nature 265, 318–19.
  • Coustenis, A. and Taylor, F. (1999). Titan-the Earth like Moon, Series on Atmospheric, Oceanic and Planetary Physics 1, World ScientificWc.
  • Cronin, J.R. and Chang, S. (1993). Organic mat- ter in meteorites: molecular and isotopic analyses of the Murchison meteorite, In: Greenberg J.M. (Eds) The chemistry of life’s origins, Kluwer Academic Publish- ers, The Netherlands 209-258.
  • Cruikshank, D.P. and Roush, T.L. (2004). Observations and Laboratory Data of Planetary Organics, In; Ehrenfreund, P., et al., (Eds.) Astrobiology: Future Per- spectives, Kluwer Academic Publishers, Netherlands 149-177.
  • Davies, J.K., Roush, T.L., Cruikshank, C.P., Bartholomew, M.J. and Geballe, T.R. Owen, (1997). The detection of water ice in comet Hale-Bopp, Icarus 127, 238-245.
  • Davis, I. and Fulton, J.D. (1959). Microbiologic studies on ecologic considerations of the Martian environment, Aeromedical Reviews 2–60.
  • Dutrey, A., Guilloteau, S. and Guelin, M. (2000). Observations of the chemistry in Circumstellar Disks, Astrochemistry: From Molecular Clouds to Planetary Systems, Astronomical Society of the PaciWc, Sogwipo 415–423.
  • Fischer, D.A., Valenti, J. and Marcy, G. (2004). Stars as Suns: Activity, evolution and planets, In: A.K. Dupree, A.O. Benz (Ed), 219th Symposium of the International Astronomical Union, IAU General Assembly XXV, Sydney (Australia), July 2003. Dordrecht, Kluwer, Academic Publishers 1–12.
  • Fish, S.A., Shepherd, T.J., McGenity, T.J. and Grant, W.D. (2002). Recovery of 16S ribosomal RNA gene fragments from ancient halite, Nature 417, 432–436.
  • Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. and Giuranna, M. (2004). Detection of methane in the atmosphere of Mars Science 306, 1758–1761.
  • Friedmann, E.I. and Koriem, A.M. (1989). Life on Mars: how it disappeared (if it was ev- er there), Advances in Space Research 9, 167–172.
  • Fuzzi, S. (2002). Organic component of aerosols and clouds, EUROTRAC-2 Symposium 2002, Transformation and Chemical Transformation in the Troposphere, Garmisch-Partenkirchen (Germany).
  • Goldsmith, P.F. and Langer, W.D. (1978). Molecular cooling and thermal balance of dense interstellar clouds, The Astrophysical Journal 222, 881–895.
  • Gonzalez, G. (2005). Habitable zones in the Universe, Origins Life Evol. Biospheres 33, 555-606.
  • Hibbitts, C.A., McCord, T.B. and Hansen, G.B. (2000). Distributions of CO2 and SO2 on the surface of Callisto, Journal of Geophysical Research 105, 22541-22557.
  • Horneck, G. and Rettberg, P. (2007). Complete Course in Astrobiology, Wiley-VCH, Verlag, Weinheim 155- 295.
  • Kashefi, K. and Lovley, D.R. (2003). Extending the upper temperature limit for life, Science 301, 934.
  • Kasting, J.F., Whitmire, D.P. and Reynolds, R.T. (1993). Habitable zones around main sequence stars, Icarus 101, 108-28.
  • Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Callott, T.A. and Williams, M.W. (1984). Optical constants of organic tholins produced in a simulated Titatian atmosphere: From Soft X-Rays to Micro- wave Frequencies, Icarus 60, 127–137.
  • Kissel, J. and Krueger, F.R. (1987). The organic component in dust from comet Halley as measured by the PUMA mass spectrome- ter on board Vega 1, Nature 326, 755- 760.
  • Knauth, L.P. and Lowe, D.R. (2003). High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Super- group, South Africa. Geological Society of America Bulletin 115, 566-580.
  • Krasnopolsky, V.A. and Cruikshank, D.P. (1999). Photochemistry of Pluto’s atmos- phere and ionosphere near perihelion, Journal of Geophysical Research 104, 21979–21996.
  • Larson, H.P., Weaver, H.A., Mumma, M.J. and Drapatz, S. (1989). Airborne infrared spectroscopy of comet Wilson (1986/1) and comparisons with comet Halley, Astrophysical Journal 338, 1106-1114.
  • Lineweaver, C.H., Fenner, Y. and Gibson, B.K. (2004). The Galactic Habitable Zone and the age distribution of complex life in the Milky Way, Science 303, 59–62.
  • Llorca, J. (2004). Organic Matter in Meteorites, International Microbiology 7, 239-248.
  • Lorenz, P.R., Orlob, G.B. and Hemenway, C.L. (1969). Survival of micro-organisms in Space, Origins Life Evolution Biospheres 1, 491–500.
  • Lucas, R. and Liszt, H.S. (2002). Comparative chemistry of diffuse clouds, Astronomy and Astrophysics 384, 1054.
  • Madau, P., Ferrara, A. and Rees, M.J. (2001). Early Metal enrichment of the nitergalac- tic medium by pregalactic outflows, The Astrophysical Journal 555, 92.
  • Madigan, M.T., Martinko, J.M. and Parker, J. (2002). Brock Biology of Microorgan- isms, 10th edn. New Jersey, Prentice- Hall, Inc.
  • Maguire, W. (1977). Martian isotopic ratios and upper limits for possible minor constitu- ents as derived from Mariner 9 infrared spectrometer data, Icarus 32, 85-97.
  • Maier, J.P., Lakin, N.M., Walker, G.A.H. and Bohlender, D.A. (2001). Detection of C3 in Diffuse Interstellar Clouds, The Astro- physical Journal 553, 267.
  • Mal’tsev, V.N., Saadavi, A., Aiad, A., El’gaui, O. and Shlip, M. (1996). Microecology of nuclear reactor pool water, Radiats Biol Radioecol 36,52-57.
  • Matteucci, F. (1991). In: Greenberg, J. M. and Pirronello V. (eds), Chemistry in Space, Kluwer Academic Publishers 1–41.
  • Millar, T.J. (2004). Organic molecules in the interstellar medium, In: Ehrenfreund, et al., (eds), Astrobiology; Future Perspec- tives, Kluwer Academic Publishers 17-31.
  • Miller, S. (1953). A production of amino acids undert possible primitive Earth condi- tions, Science 117, 528–529.
  • Noll, K.S., Johnson, R.E., Lane, A.L. and Dominque, D. (1996). Detection of ozone on Ganymede, Science 273, 341-343.
  • Oró, J. (1961). Comets and the formation of bio- chemical compounds on the primitive Earth, Nature 190, 389–390.
  • Peeters, Z., Botta, O., Charnley, S.B. and Ruiterkamp, R. (2003). The astrobiology of nucleobases, The Astrophysical Jour- nal 593, L129.
  • Pizzarello, S. and Cronin, J.R. (2000). Non-racemic amino-acids in the Murray and Murchison meteorites, Geochimica Cosmochimica Acta 64, 329–338.
  • Roos-Serote, M. (2004). Organic Molecules In Planetary Atmospheres, In; Ehrenfreund, P., et al. (Eds.) Astrobiology: Future Per- spectives, Kluwer Academic Publishers, Netherlands 128.
  • Proctor, R. (1870). Other Worlds Than Ours, New York, Longmans.
  • Rothschild, L.J. (2007). Extremophiles: defining the envelope for the search for life in the universe, In: Pudritz R.E., Higgs P. and Stone J., (Eds.) Planetary Systems and the Origins of Life, Cambridge University Press, Cambridge, UK.
  • Ryder, G. (2002). Mass influx in the ancient Earth-Moon system and benign implica- tions for the origin of life on Earth, Jour- nal of Geophysical Research 107.
  • Sagan, C. and Salpeter, E.E. (1976). Particles, environments, and possible ecologies in the jovian atmosphere. Astrophysicial Journal of Supplemen Series 32, 624.
  • Sagan, C., Thompson, W.R., Carlson, R., Curnett, D. and Hord, C. (1993). A Search for Life on Earth From the Galileo Space- craft, Nature, 365, 715 - 721, doi:10.1038/365715a0
  • Sattler, B., Puxbaum, H. and Psenner, R. (2001). Bacterial growth in supercooled cloud droplets, Geophysicial Research Letters 28, 239–242.
  • Schindler, T.L. and Kasting, J.F. (2000). Synthetic spectra of simulated terrstrial atmospheres biomarker gases, Icarus 145, 262–271. possible
  • Schramm, D.N. (1998). Big Bang Theory and and primordial nuclei, SSRv 84, 167.
  • Singaravelan, N., Grishkan, I., Beharav, A., Wakamatsu, K., Ito, S. and Nevo, E. (2008). Adaptive melanin response of the soil fungus Aspergillus niger to UV radia- tion stress at ‘Evolution Canyon’, Mount Carmel, Israel, PLoS ONE, 3, e2993.
  • Stevens, A. (1936). Mans furthest aloft, National Geographic Magazine 69, 693–712.
  • Stoker, C.R., Boston, P.J., Mancinelli, R.L., Segal, W., Khare, B.N. and Sagan, C. (1999). Microbial metabolism of tholin, Icarus 85, 1, 241-256.
  • Taylor, G.R., Bailey, J.V. and Benton, E.V. (1975). Physical dosimetric evaluations in the Apollo 16 microbial response experi- ment, Life Sciences Space and Research 13, 135–141.
  • Wassmann, M., Moeller, R., Reitz, G. and Rettberg, P. (2010). Adaptation of Bacillus subtilis cells to Archean-like UV climate: Relevant hints of microbial evolution to remarkably increased radia- tion resistance, Astrobiology 10:6, 605- 615.
  • Westall, F. and Walsh, M.M. (2000). The diver- sity of fossil microorganisms in Archae- an-age rocks, In: Seckbach J. (Eds) Jour- ney to Diverse Microbial Worlds, Kluwer, Amsterdam 15-27.
  • Wiegel, J. and Adams, W.W. (1998). Thermo- philes, the keys to molecular evolution and the origin of life?, Taylor & Francis, London 339.
  • Wilde, S.A., Valley, J.W., Peck, W.H. and Graham, C.M. (2001). Evidence from detrital zircons for the existence of conti- nental crust and oceans on the Earth 4.4 Gyr ago, Nature 409, 175-178.
  • Yayanos, A.A. (1995). Microbiology to 10,500 meters in the deep sea, Annual Review of Microbiology 49, 777–805.

Details

Primary Language Turkish
Journal Section Articles
Authors

Betül BULUÇ This is me


Mustafa YAMAÇ>


Metin ALTAN>

Publication Date March 16, 2012
Published in Issue Year 2012, Volume 2, Issue 2

Cite

Bibtex @ { aubtdc42398, journal = {Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology}, issn = {2146-0264}, eissn = {2146-0213}, address = {}, publisher = {Eskisehir Technical University}, year = {2012}, volume = {2}, number = {2}, pages = {119 - 142}, title = {DÜNYA DIŞI ORTAMLARIN MİKROBİYAL YAŞANABİLİRLİK AÇISINDAN DEĞERLENDİRİLMESİ}, key = {cite}, author = {Buluç, Betül and Yamaç, Mustafa and Altan, Metin} }
APA Buluç, B. , Yamaç, M. & Altan, M. (2012). DÜNYA DIŞI ORTAMLARIN MİKROBİYAL YAŞANABİLİRLİK AÇISINDAN DEĞERLENDİRİLMESİ . Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology , 2 (2) , 119-142 . Retrieved from https://dergipark.org.tr/en/pub/aubtdc/issue/3053/42398
MLA Buluç, B. , Yamaç, M. , Altan, M. "DÜNYA DIŞI ORTAMLARIN MİKROBİYAL YAŞANABİLİRLİK AÇISINDAN DEĞERLENDİRİLMESİ" . Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 2 (2012 ): 119-142 <https://dergipark.org.tr/en/pub/aubtdc/issue/3053/42398>
Chicago Buluç, B. , Yamaç, M. , Altan, M. "DÜNYA DIŞI ORTAMLARIN MİKROBİYAL YAŞANABİLİRLİK AÇISINDAN DEĞERLENDİRİLMESİ". Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 2 (2012 ): 119-142
RIS TY - JOUR T1 - EVALUATION OF MICROBIAL SURVIVAL IN EXTRATERRESTRIAL ENVIRONMENTS AU - BetülBuluç, MustafaYamaç, MetinAltan Y1 - 2012 PY - 2012 N1 - DO - T2 - Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology JF - Journal JO - JOR SP - 119 EP - 142 VL - 2 IS - 2 SN - 2146-0264-2146-0213 M3 - UR - Y2 - 2022 ER -
EndNote %0 Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology DÜNYA DIŞI ORTAMLARIN MİKROBİYAL YAŞANABİLİRLİK AÇISINDAN DEĞERLENDİRİLMESİ %A Betül Buluç , Mustafa Yamaç , Metin Altan %T DÜNYA DIŞI ORTAMLARIN MİKROBİYAL YAŞANABİLİRLİK AÇISINDAN DEĞERLENDİRİLMESİ %D 2012 %J Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology %P 2146-0264-2146-0213 %V 2 %N 2 %R %U
ISNAD Buluç, Betül , Yamaç, Mustafa , Altan, Metin . "DÜNYA DIŞI ORTAMLARIN MİKROBİYAL YAŞANABİLİRLİK AÇISINDAN DEĞERLENDİRİLMESİ". Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 2 / 2 (March 2012): 119-142 .
AMA Buluç B. , Yamaç M. , Altan M. DÜNYA DIŞI ORTAMLARIN MİKROBİYAL YAŞANABİLİRLİK AÇISINDAN DEĞERLENDİRİLMESİ. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. 2012; 2(2): 119-142.
Vancouver Buluç B. , Yamaç M. , Altan M. DÜNYA DIŞI ORTAMLARIN MİKROBİYAL YAŞANABİLİRLİK AÇISINDAN DEĞERLENDİRİLMESİ. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. 2012; 2(2): 119-142.
IEEE B. Buluç , M. Yamaç and M. Altan , "DÜNYA DIŞI ORTAMLARIN MİKROBİYAL YAŞANABİLİRLİK AÇISINDAN DEĞERLENDİRİLMESİ", Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology, vol. 2, no. 2, pp. 119-142, Mar. 2012