Araştırma Makalesi
BibTex RIS Kaynak Göster

Bibliometric Analysis of Gender Inequality Research Using Data Mining Techniques: Trends, Key Insights, and Future Directions

Yıl 2025, Cilt: 25 Sayı: 3, 79 - 102, 25.09.2025
https://doi.org/10.18037/ausbd.1589524

Öz

This bibliometric analysis study aims to explore the intersection of gender inequality and artificial intelligence research by uncovering key contemporary trends, influential works, and emerging themes in this interdisciplinary field. To achieve this, the study employed content and bibliometric analysis methods to examine 5,074 academic publications indexed in the Scopus database. These publications focus on gender inequality and AI-related areas such as data mining, machine learning, and predictive modeling. By using tools such as VOSviewer and Python-based analytical techniques, the study identified thematic trends, methodological approaches, and interdisciplinary patterns across various sectors including education, healthcare, and the workplace. The analysis also revealed significant gaps and evolving directions in the literature, offering a comprehensive view of how data-driven methods have been applied to understand and address gender inequality. By focusing on the most cited publications, prominent authors, and international collaborations, the analysis provides a comprehensive assessment of the current state of the field. Furthermore, by identifying thematic clusters and research gaps, the study sheds light on the evolving approaches to addressing gender inequality using modern data-driven methods. This research contributes to the growing body of literature that seeks to harness data science for social good and to promote a deeper understanding of gender-related challenges in contemporary societies. In addition, it addresses the relationship between gender theories and computational methodologies, particularly the intersection of gender perspectives with data mining and artificial intelligence.

Kaynakça

  • Acharya, A. A., Mahali, P., & Mohapatra, D. P. (2015). Model-based test case prioritization using association rule mining. In Computational Intelligence in Data Mining-Volume 3: Proceedings of the International Conference on CIDM, 20-21 December 2014 (pp. 429-440). Springer India.
  • Belingheri, P., Chiarello, F., Fronzetti Colladon, A., & Rovelli, P. (2021). Twenty years of gender equality research: A scoping review based on a new semantic indicator. Plos One, 16(9), 1-27.
  • Bitzenis, A., Koutsoupias, N., & Boutsiouki, S. (2023, July). Business research and data mining: A bibliometric analysis. In 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) (pp. 1-6). IEEE.
  • Boekhout, H., van der Weijden, I., & Waltman, L. (2021). Gender differences in scientific careers: A large-scale bibliometric analysis. arXiv preprint, arXiv:2106.12624.
  • Bowen, D. (2021, September). Construction of business English subject system based on data mining algorithm. In 2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE) (pp. 441-445). IEEE.
  • Buolamwini, J., & Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. Proceedings of Machine Learning Research, 81, (pp. 1–15).
  • Cameron, C., Pierson, H., Aragon, C. M., & West, J. D. (2023). Gender disparities in the dissemination and acquisition of scientific knowledge. arXiv. https://arxiv.org/abs/2407.17441
  • Crawford, K. (2021). Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. Yale University Press.
  • Dastin, J. (2022). Amazon scraps secret AI recruiting tool that showed bias against women. In Ethics of data and analytics, Auerbach Publications (pp. 296-299).
  • Davari, M., Noursalehi, P., & Keramati, A. (2019). Data mining approach to professional education market segmentation: A case study. Journal of Marketing for Higher Education, 29(1), 45-66.
  • Demiray, B., & Ünüvar Ünlüoğlu, D. (2023). Bibliometric analysis of research trends on gender and sustainability: Future research perspectives. İmgelem, 7(13), 545-560.
  • Demirgöz Bal, M. (2014). Toplumsal Cinsiyet Eşitsizliğine Genel Bakış. Kadın Sağlığı
  • Hemşireliği Dergisi, 1(1), 15-28.
  • Dominguez, D., Pantoja, O., De Los Nietos, J., García, H., Sánchez, Á., & González, M. (2019, April). Soft-computing modeling and prediction of gender equality. In 2019 Sixth International Conference on eDemocracy & eGovernment (ICEDEG) (pp. 242-248). IEEE.
  • Farsia, L. (2024). Ensuring equal opportunity: Gender equality in workplace. Accentia: Journal of English Language and Education, 4(1), 21-28.
  • García‐Sánchez, I. M., Minutiello, V., & Tettamanzi, P. (2022). Gender disclosure: The impact of peer behaviour and the firm's equality policies. Corporate Social Responsibility and Environmental Management, 29(2), 385-405.
  • Gartzia, L. (2021). Gender equality in business action: A multi-agent change management approach. Sustainability, 13(11), 1-29.
  • Gupta, M. K., & Chandra, P. (2020). A comprehensive survey of data mining. International Journal of Information Technology, 12(4), 1243-1257.
  • Holman, L., Stuart-Fox, D., & Hauser, C. E. (2018). The gender gap in science: How long until women are equally represented? PLoS Biology, 16(4), e2004956. https://doi.org/10.1371/journal.pbio.2004956
  • Huang, J., Gates, A. J., Sinatra, R., & Barabási, A.-L. (2020). Historical comparison of gender inequality in scientific careers across countries and disciplines. Proceedings of the National Academy of Sciences, 117(9), 4609–4616. https://doi.org/10.1073/pnas.1914221117
  • Irfan, S., & Sharif, K. (2024). Gender equality in management: Exploring social science perspectives. Global Journal of Econometrics and Finance, 1(02), 64-75.
  • Ko, Y., Ko, H., Chung, Y., & Woo, C. (2021). Do gender equality and work–life balance matter for innovation performance? Technology Analysis & Strategic Management, 33(2), 148-161.
  • Križanić, S. (2020). Educational data mining using cluster analysis and decision tree technique: A case study. International Journal of Engineering Business Management, 12, 1847979020908675.
  • Li, T., & Zhang, C. (2022). Research on the application of multimedia entropy method in data mining of retail business. Scientific Programming, 2022(1), 1-13.
  • Nilsson, N. J. (1998). Artificial Intelligence: A New Synthesis. Morgan Kaufmann.
  • OECD. (2017). The pursuit of gender equality: An uphill battle. Retrieved from https://www.oecd.org/en/publications/the-pursuit-of-gender-equality_9789264281318-en.html
  • Peng, X. Y., Fu, Y. H., & Zou, X. Y. (2024). Gender equality and green development: A qualitative survey. Innovation and Green Development, 3(1), 100089.
  • Plotnikova, V., Dumas, M., Nolte, A., & Milani, F. (2023). Designing a data mining process for the financial services domain. Journal of Business Analytics, 6(2), 140-166.
  • Ridgeway, C. L. (2011). Framed by Gender: How Gender Inequality Persists in the Modern World. Oxford University Press.
  • Ritter-Hayashi, D., Vermeulen, P., & Knoben, J. (2019). Is this a man’s world? The effect of gender diversity and gender equality on firm innovativeness. Plos One, 14(9), 1-19.
  • Russell, S., & Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4th ed.). Pearson.
  • Singh, G. V., Ghosh, S., & Ekbal, A. (2023). Promoting gender equality through gender-biased language analysis in social media. In IJCAI, 6210-6218.
  • Stotsky, J. G., Shibuya, S., Kolovich, L., & Kebhaj, S. (2016). Trends in gender equality and women’s advancement. IMF Working Paper Research Department and Strategy, Policy, and Review Department.
  • Toksöz, G., & Memiş, E. (2018). Mapping and monitoring gender equality in employment. CEİD Publications, Ankara.
  • UN Women. (2020). The World's Women 2020: Trends and Statistics. United Nations.
  • UN Women. (2023). Global gender equality in 2023: Urgent efforts needed to reach 2030 goals. Retrieved from https://www.unwomen.org/en/news-stories/feature-story/2023/09/global-gender-equality-in-2023-urgent-efforts-needed-to-reach-2030-goals
  • UNDP. (2020). Human development report 2020: The next frontier – Human development and the Anthropocene. United Nations Development Programme. Retrieved from https://hdr.undp.org
  • World Bank. (2024). Gender overview. Retrieved from https://www.worldbank.org/en/topic/gender/overview
  • World Economic Forum. (2023). Global Gender Gap Report 2023. Retrieved from https://www.weforum.org/reports/global-gender-gap-report-2023/
  • Xin, Y. (2021). Analyzing the quality of business English teaching using multimedia data mining. Mobile Information Systems, 2021(1), 1-8.
  • Yan, Y., & Liu, Q. (2019). An overview of the application of data mining technology in e-commerce. Academic Journal of Engineering and Technology Science, 2(2), 76-88.
  • Zhen, C., & Jiang, C. (2019). Overview of data mining in the era of big data. International Core Journal of Engineering, 5(10), 136-139.

Veri Madenciliği Tekniklerini Kullanarak Cinsiyet Eşitsizliği Araştırmalarının Bibliyometrik Analizi: Trendler, Temel Görüşler ve Gelecekteki Yönler

Yıl 2025, Cilt: 25 Sayı: 3, 79 - 102, 25.09.2025
https://doi.org/10.18037/ausbd.1589524

Öz

Bu bibliyometrik analiz çalışması, toplumsal cinsiyet eşitsizliği ile yapay zekâ araştırmalarının kesişim noktasını inceleyerek, bu disiplinler arası alandaki güncel eğilimleri, etkili çalışmaları ve ortaya çıkan temaları ortaya koymayı amaçlamaktadır. Bu doğrultuda, Scopus veri tabanında indekslenen, toplumsal cinsiyet eşitsizliği ve yapay zekâyla ilişkili alanlara (veri madenciliği, makine öğrenmesi, kestirimsel modelleme vb.) odaklanan 5.074 akademik yayın, içerik ve bibliyometrik analiz yöntemleriyle incelenmiştir. VOSviewer yazılımı ve Python tabanlı analiz araçları kullanılarak, eğitim, sağlık ve iş dünyası gibi çeşitli sektörlerde tematik eğilimler, yöntemsel yaklaşımlar ve disiplinlerarası örüntüler belirlenmiştir. Yapılan analizler, literatürdeki temel boşlukları ve gelişen araştırma yönelimlerini ortaya koyarak, veri odaklı yöntemlerin toplumsal cinsiyet eşitsizliğini anlama ve çözme sürecindeki rolüne dair kapsamlı bir çerçeve sunmaktadır. Analiz, en çok atıf alan makalelere, etkili yazarlara ve ülkesel iş birliklerine odaklanarak, alanın mevcut durumunun kapsamlı bir değerlendirmesini sunmaktadır. Dahası, tema kümelerini ve araştırma boşluklarını belirleyerek, modern veri odaklı yöntemleri kullanarak cinsiyet eşitsizliğiyle mücadele için geçmişten günümüze değişen yaklaşımlara ışık tutmaktadır. Bu çalışma, veri bilimini toplumsal fayda için kullanmayı amaçlayan ve modern toplumlarda cinsiyetle ilgili zorlukların daha derin bir şekilde anlaşılmasını teşvik eden büyüyen literatüre katkıda bulunmaktadır. Ayrıca, toplumsal cinsiyet kuramları ve veri madenciliği, yapay zeka arasındaki ilişkiyi ele almaktadır.

Kaynakça

  • Acharya, A. A., Mahali, P., & Mohapatra, D. P. (2015). Model-based test case prioritization using association rule mining. In Computational Intelligence in Data Mining-Volume 3: Proceedings of the International Conference on CIDM, 20-21 December 2014 (pp. 429-440). Springer India.
  • Belingheri, P., Chiarello, F., Fronzetti Colladon, A., & Rovelli, P. (2021). Twenty years of gender equality research: A scoping review based on a new semantic indicator. Plos One, 16(9), 1-27.
  • Bitzenis, A., Koutsoupias, N., & Boutsiouki, S. (2023, July). Business research and data mining: A bibliometric analysis. In 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) (pp. 1-6). IEEE.
  • Boekhout, H., van der Weijden, I., & Waltman, L. (2021). Gender differences in scientific careers: A large-scale bibliometric analysis. arXiv preprint, arXiv:2106.12624.
  • Bowen, D. (2021, September). Construction of business English subject system based on data mining algorithm. In 2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE) (pp. 441-445). IEEE.
  • Buolamwini, J., & Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. Proceedings of Machine Learning Research, 81, (pp. 1–15).
  • Cameron, C., Pierson, H., Aragon, C. M., & West, J. D. (2023). Gender disparities in the dissemination and acquisition of scientific knowledge. arXiv. https://arxiv.org/abs/2407.17441
  • Crawford, K. (2021). Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. Yale University Press.
  • Dastin, J. (2022). Amazon scraps secret AI recruiting tool that showed bias against women. In Ethics of data and analytics, Auerbach Publications (pp. 296-299).
  • Davari, M., Noursalehi, P., & Keramati, A. (2019). Data mining approach to professional education market segmentation: A case study. Journal of Marketing for Higher Education, 29(1), 45-66.
  • Demiray, B., & Ünüvar Ünlüoğlu, D. (2023). Bibliometric analysis of research trends on gender and sustainability: Future research perspectives. İmgelem, 7(13), 545-560.
  • Demirgöz Bal, M. (2014). Toplumsal Cinsiyet Eşitsizliğine Genel Bakış. Kadın Sağlığı
  • Hemşireliği Dergisi, 1(1), 15-28.
  • Dominguez, D., Pantoja, O., De Los Nietos, J., García, H., Sánchez, Á., & González, M. (2019, April). Soft-computing modeling and prediction of gender equality. In 2019 Sixth International Conference on eDemocracy & eGovernment (ICEDEG) (pp. 242-248). IEEE.
  • Farsia, L. (2024). Ensuring equal opportunity: Gender equality in workplace. Accentia: Journal of English Language and Education, 4(1), 21-28.
  • García‐Sánchez, I. M., Minutiello, V., & Tettamanzi, P. (2022). Gender disclosure: The impact of peer behaviour and the firm's equality policies. Corporate Social Responsibility and Environmental Management, 29(2), 385-405.
  • Gartzia, L. (2021). Gender equality in business action: A multi-agent change management approach. Sustainability, 13(11), 1-29.
  • Gupta, M. K., & Chandra, P. (2020). A comprehensive survey of data mining. International Journal of Information Technology, 12(4), 1243-1257.
  • Holman, L., Stuart-Fox, D., & Hauser, C. E. (2018). The gender gap in science: How long until women are equally represented? PLoS Biology, 16(4), e2004956. https://doi.org/10.1371/journal.pbio.2004956
  • Huang, J., Gates, A. J., Sinatra, R., & Barabási, A.-L. (2020). Historical comparison of gender inequality in scientific careers across countries and disciplines. Proceedings of the National Academy of Sciences, 117(9), 4609–4616. https://doi.org/10.1073/pnas.1914221117
  • Irfan, S., & Sharif, K. (2024). Gender equality in management: Exploring social science perspectives. Global Journal of Econometrics and Finance, 1(02), 64-75.
  • Ko, Y., Ko, H., Chung, Y., & Woo, C. (2021). Do gender equality and work–life balance matter for innovation performance? Technology Analysis & Strategic Management, 33(2), 148-161.
  • Križanić, S. (2020). Educational data mining using cluster analysis and decision tree technique: A case study. International Journal of Engineering Business Management, 12, 1847979020908675.
  • Li, T., & Zhang, C. (2022). Research on the application of multimedia entropy method in data mining of retail business. Scientific Programming, 2022(1), 1-13.
  • Nilsson, N. J. (1998). Artificial Intelligence: A New Synthesis. Morgan Kaufmann.
  • OECD. (2017). The pursuit of gender equality: An uphill battle. Retrieved from https://www.oecd.org/en/publications/the-pursuit-of-gender-equality_9789264281318-en.html
  • Peng, X. Y., Fu, Y. H., & Zou, X. Y. (2024). Gender equality and green development: A qualitative survey. Innovation and Green Development, 3(1), 100089.
  • Plotnikova, V., Dumas, M., Nolte, A., & Milani, F. (2023). Designing a data mining process for the financial services domain. Journal of Business Analytics, 6(2), 140-166.
  • Ridgeway, C. L. (2011). Framed by Gender: How Gender Inequality Persists in the Modern World. Oxford University Press.
  • Ritter-Hayashi, D., Vermeulen, P., & Knoben, J. (2019). Is this a man’s world? The effect of gender diversity and gender equality on firm innovativeness. Plos One, 14(9), 1-19.
  • Russell, S., & Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4th ed.). Pearson.
  • Singh, G. V., Ghosh, S., & Ekbal, A. (2023). Promoting gender equality through gender-biased language analysis in social media. In IJCAI, 6210-6218.
  • Stotsky, J. G., Shibuya, S., Kolovich, L., & Kebhaj, S. (2016). Trends in gender equality and women’s advancement. IMF Working Paper Research Department and Strategy, Policy, and Review Department.
  • Toksöz, G., & Memiş, E. (2018). Mapping and monitoring gender equality in employment. CEİD Publications, Ankara.
  • UN Women. (2020). The World's Women 2020: Trends and Statistics. United Nations.
  • UN Women. (2023). Global gender equality in 2023: Urgent efforts needed to reach 2030 goals. Retrieved from https://www.unwomen.org/en/news-stories/feature-story/2023/09/global-gender-equality-in-2023-urgent-efforts-needed-to-reach-2030-goals
  • UNDP. (2020). Human development report 2020: The next frontier – Human development and the Anthropocene. United Nations Development Programme. Retrieved from https://hdr.undp.org
  • World Bank. (2024). Gender overview. Retrieved from https://www.worldbank.org/en/topic/gender/overview
  • World Economic Forum. (2023). Global Gender Gap Report 2023. Retrieved from https://www.weforum.org/reports/global-gender-gap-report-2023/
  • Xin, Y. (2021). Analyzing the quality of business English teaching using multimedia data mining. Mobile Information Systems, 2021(1), 1-8.
  • Yan, Y., & Liu, Q. (2019). An overview of the application of data mining technology in e-commerce. Academic Journal of Engineering and Technology Science, 2(2), 76-88.
  • Zhen, C., & Jiang, C. (2019). Overview of data mining in the era of big data. International Core Journal of Engineering, 5(10), 136-139.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sosyal Bilimlerde ve Eğitimde Bilgi İşleme, Veri Madenciliği ve Bilgi Keşfi, Eşitsizlik Sosyolojisi
Bölüm Makaleler
Yazarlar

Nesibe Manav Mutlu 0000-0002-7853-6337

Polathan Küsbeci 0000-0002-4858-3853

Yayımlanma Tarihi 25 Eylül 2025
Gönderilme Tarihi 2 Aralık 2024
Kabul Tarihi 15 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 25 Sayı: 3

Kaynak Göster

APA Mutlu, N. M., & Küsbeci, P. (2025). Bibliometric Analysis of Gender Inequality Research Using Data Mining Techniques: Trends, Key Insights, and Future Directions. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 25(3), 79-102. https://doi.org/10.18037/ausbd.1589524