Research Article
BibTex RIS Cite
Year 2020, Volume: 67 Issue: 4, 343 - 347, 01.09.2020
https://doi.org/10.33988/auvfd.601699

Abstract

References

  • 1. Arena ME, Landete JM, Manca de Nadra MC, et al (2008): Factors affecting the production of putrescine from agmatine by Lactobacillus hilgardii X1B isolated from wine. J Appl Microbiol, 105, 158–165.
  • 2. Aygün O (2003): Biyojen aminler- süt ve süt ürünlerindeki varlığı ve önemi. J Res Vet Med, 22, 91-95.
  • 3. Burdychova R, Komprda T (2007): Biogenic amine-forming microbial communities in cheese. FEMS Microbiol Lett, 276, 149–155.
  • 4. Coton E, Coton M (2005): Multiplex PCR for colony direct detection of Gram-positive histamine-and tyramine-producing bacteria. J Microbiol Met, 63, 296-304.
  • 5. Coton E, Coton M (2009): Evidence of horizontal transfer as origin of strain to strain variation of the tyramine production trait in Lactobacillus brevis. Food Microbiol, 26, 52–57.
  • 6. Çoban EÖ, Patır B (2008): Investigation of histamine level and some chemical quality parameters in fish consumed in Elazığ city. Int J Sci Tech, 3, 59-65.
  • 7. Dapkevicius MLE, Nout MR, Rombouts FM, et al (2000): Biogenic amine formation and degradation by potential fish silage starter microorganisms. Int J Food Microbiol, 57, 107-114.
  • 8. Deepika Priyadarshani WM, Rakshit SK (2011): Screening selected strains of probiotic lactic acid bacteria for their ability to produce biogenic amines (histamine and tyramine). Int J Food Sci Technol, 46, 2062-2069.
  • 9. Fernández M, Linares DM, Rodríguez A, et al (2007): Factors affecting tyramine production in Enterococcus durans IPLA655. Appl Microbiol Biotechnol, 73, 1400–1406.
  • 10. Fuji T, Kurihara K, Okuzumi M (1994): Viability and histidine decarboxylase activity of halophilic histamine-forming bacteria during frozen storage. J Food Prot, 57, 611-613.
  • 11. Joosten HMLJ (1988): Conditions allowing the formation of biogenic amines in cheese. 3. factors ınfluencing the amongs formed. Neth. Milk Dairy J, 41, 329-357.
  • 12. Joosten HMLJ, Stadhouders J (1987): Conditions allowing the formation of biogenic amines in cheese. 1. decarboxylative properties of starter bacteria. Neth Milk Dairy J, 41, 247-258.
  • 13. Kantaria UD, Gokani RH (2011): Quality and safety of biogenic amines. Int J Res Pharm Biomed Sci, 2, 1461-1468.
  • 14. Kim SH, Ben-Gigirey B, Barros-Velazquez J, et al (2000): Histamine and biogenic amine production by Morganella morganii isolated from temperature-abused albacore. J Food Prot, 63, 244-251.
  • 15. Komprda T, Burdychová R, Dohnal V, et al (2008): Tyramine production in Dutch-type semi-hard cheese from two different producers. Food Microbiol, 25, 219–227.
  • 16. Ladero V, Calles-Enríquez M, Fernández M, et al (2010): Toxicological effects of dietary biogenic amines. Curr Nutr Food Sci, 6, 145-156.
  • 17. Lehane L, Olley J (2000): Histamine fish poisoning revisited. Int J Food Microbiol, 58, 1–37.
  • 18. Linares DM, Martín M, Ladero V, et al (2011): Biogenic amines in dairy products. Crit Rev Food Sci, 51, 691-703.
  • 19. López-Sabater EI, Rodríguez-Jerez J, Hernández-Herrero M, et al (1996): Incidence of histamine-forming bacteria and histamine content in scombroid fish species from retail markets in the Barcelona area. Int J Food Microbiol, 28, 411-418.
  • 20. Lopez-Sabater EI, Rodriguez-Jerez JJ, Roig-Sagues AX, et al (1994): Bacteriological quality of tuna fish (Thunnus thynnus) destined for canning: effect of tuna handling on presence of histidine decarboxylase bacteria and histamine level. J Food Prot, 57, 318-323.
  • 21. Loser C (2000): Polyamines in human and animal milk. Br J Nutr, 84, 55-58.
  • 22. Lucas P, Landete J, Coton M, et al (2003): The tyrosine decarboxylase operon of Lactobacillus brevis IOEB 9809: characterization and conservation in tyramine-producing bacteria. FEMS Microbiol Lett, 229, 65-71.
  • 23. Maijala RL (1993): Formation of histamine and tyramine by some lactic acid bacteria in MRS broth and modified decarboxylation agar. Lett Appl Microbiol, 17, 40-43.
  • 24. Mangia NP, Trani A, Di Luccia A, et al (2013): Effect of the use of autochthonous Lactobacillus curvatus, Lactobacillus plantarum and Staphylococcus xylosus strains on microbiological and biochemical properties of the Sardinian fermented sausage. Eur Food Res Technol, 236, 557-566.
  • 25. Marcobal A, de las Rivas B, Moreno-Arribas MV, et al (2005): Multiplex PCR method for the simultaneous detection of histamine-, tyramine-, and putrescine-producing lactic acid bacteria in foods. J Food Prot, 68, 874-878.
  • 26. Marcobal A, Martín-Álvarez PJ, Moreno-Arribas MV, et al (2006): A multifactorial design for studying factors influencing growth and tyramine production of the lactic acid bacteria Lactobacillus brevis CECT4669 and Enterococcus faecium BIFI-58. Res Microbiol, 157, 417–424.
  • 27. Marino M, Maifreni M, Moret S, et al (2000): The capacity of Enterobacteriaceae species to produce biogenic amines in cheese. Lett Appl Microbiol, 31, 169-173.
  • 28. Mazzoli R, Lamberti C, Coissson JD, et al (2009): Influence of ethanol, malate and arginine on histamine production of Lactobacillus hilgardii isolated from an Italian red wine. Amino Acids, 36, 81–89.
  • 29. Muñoz-Atienza E, Landeta G, de las Rivas B, et al (2011): Phenotypic and genetic evaluations of biogenic amine production by lactic acid bacteria isolated from fish and fish products. Int J Food Microbiol, 146, 212–216.
  • 30. Niven CF, Jeffrey MB, Corlett DA (1981): Differential plating medium for quantitative detection of histamine-producing bacteria. Appl Environ Microbiol, 41, 321-322.
  • 31. Özbay Doğu S, Sarıçoban C (2015): Balık ve balık ürünlerinde biyojen aminler ve önemi. KSÜ Doğa Bil Derg, 18, 19-28.
  • 32. Özoğul F, Küley E, Özoğul, Y (2004): Balık ve balık ürünlerinde oluşan biyojen aminler. Su Ürünleri Dergisi, 21, 375-381.
  • 33. Pascual-Anderson MR, Calderen-Pascual V (2000): Microbiologa Alimentaria. Metodologia Para Alimentos Y Bebidas. Diaz de Santos, S.A., Madrid, Spain.
  • 34. Pons-Sánchez-Cascado S, Vidal-Carou MC, Mariné-Font A, et al (2005). Influence of the freshness grade of raw fish on the formation of volatile and biogenic amines during the manufacture and storage of vinegar-marinated anchovies. J Agric Food Chem, 53, 8586-8592.
  • 35. Silla Santos MH (1996): Biogenic amines: their importance in foods. Int J Food Microbiol, 29, 213-231.
  • 36. Spano G, Russo P, Lonvaud-Funel A, et al (2010): Biogenic amines in fermented foods. Eur J Clin Nutr, 64, 95–100.
  • 37. Takahashi H, Kimura B, Yoshikawa M, et al (2003): Cloning and sequencing of the histidine decarboxylase genes of gram-negative, histamine-producing bacteria and their application in detection and identification of these organisms in fish. Appl Environ Microbiol, 69, 2568–2579.
  • 38. Ten Brink B, Damink C, Joosten HMJL, et al (1990): Occurrence and formation of biologically active amines in foods. Int J Food Microbiol, 11, 73–84.
  • 39. Veciana Nogués MT, Vidal Carou MC, Marine Font A (1989): Histamine and tyramine in preserved and semi preserved fish products. J Food Sci, 54, 1653-1655.
  • 40. Vidal-Carou MC, Izquierdo-Pulido ML, Martin-Morro MC (1990): Histamine and tyramine in meat products: relationship with meat spoilage. Food Chem, 37, 239-249.
  • 41. Yoshinaga DH, Frank HA (1982): Histamine-producing bacteria in decomposing skipjack tuna (Katsuwonus pelamis). Appl Environ Microbiol, 44, 447-452. nviron Microbiol, 44, 447-452.

Histidine and tyrosine decarboxylase activities of lactic acid bacteria in sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax)

Year 2020, Volume: 67 Issue: 4, 343 - 347, 01.09.2020
https://doi.org/10.33988/auvfd.601699

Abstract

Biogenic amines (BAs) are formed by decarboxylation of amino acids, amination and transamination of aldehyde and ketone groups. The excess of BAs is harmful to human health. BAs play a significant role in determining the shelf life and quality of foods. Released type and amount of BAs depend on factors such as the quality of the raw material, the diversity of natural microbiota, processing and storage conditions. In fish, the release of BAs is affected primarily from microbial growth as well as other reasons and may cause poisoning. It was aimed to determine the possibility of histidine decarboxylase activity gene (hdc) and tyrosine decarbocylase activity gene (tyrdc) in lactic acid bacteria (LAB) which were isolated from sea bream and sea bass. A total of 18 Gram positive-catalase negative LAB was isolated from 84 fish samples from 14 different fish markets. It was found that 12 out of 18 LAB (67%) isolates showed negative histidine and tyrosine decarboxylase activities. While 2 out of 6 (11%) LAB isolates were determined positive only tyrosine decarboxylase and 4 of them (22%) were positive for histidine and tyrosine decarboxylase. As a result of the Polymerase Chain Reaction (PCR), 9 out of 12 LAB isolates (75%) were found to have histidine decarboxylase activity gene. As a result, the prevalence of histidine decarboxylase activity gene in the LAB has detected more extensive than tyrosine decarboxylase activity gene. Increasing the studies examining the presence of aminobiogenic microorganisms in fish is important for the protection of public health.

References

  • 1. Arena ME, Landete JM, Manca de Nadra MC, et al (2008): Factors affecting the production of putrescine from agmatine by Lactobacillus hilgardii X1B isolated from wine. J Appl Microbiol, 105, 158–165.
  • 2. Aygün O (2003): Biyojen aminler- süt ve süt ürünlerindeki varlığı ve önemi. J Res Vet Med, 22, 91-95.
  • 3. Burdychova R, Komprda T (2007): Biogenic amine-forming microbial communities in cheese. FEMS Microbiol Lett, 276, 149–155.
  • 4. Coton E, Coton M (2005): Multiplex PCR for colony direct detection of Gram-positive histamine-and tyramine-producing bacteria. J Microbiol Met, 63, 296-304.
  • 5. Coton E, Coton M (2009): Evidence of horizontal transfer as origin of strain to strain variation of the tyramine production trait in Lactobacillus brevis. Food Microbiol, 26, 52–57.
  • 6. Çoban EÖ, Patır B (2008): Investigation of histamine level and some chemical quality parameters in fish consumed in Elazığ city. Int J Sci Tech, 3, 59-65.
  • 7. Dapkevicius MLE, Nout MR, Rombouts FM, et al (2000): Biogenic amine formation and degradation by potential fish silage starter microorganisms. Int J Food Microbiol, 57, 107-114.
  • 8. Deepika Priyadarshani WM, Rakshit SK (2011): Screening selected strains of probiotic lactic acid bacteria for their ability to produce biogenic amines (histamine and tyramine). Int J Food Sci Technol, 46, 2062-2069.
  • 9. Fernández M, Linares DM, Rodríguez A, et al (2007): Factors affecting tyramine production in Enterococcus durans IPLA655. Appl Microbiol Biotechnol, 73, 1400–1406.
  • 10. Fuji T, Kurihara K, Okuzumi M (1994): Viability and histidine decarboxylase activity of halophilic histamine-forming bacteria during frozen storage. J Food Prot, 57, 611-613.
  • 11. Joosten HMLJ (1988): Conditions allowing the formation of biogenic amines in cheese. 3. factors ınfluencing the amongs formed. Neth. Milk Dairy J, 41, 329-357.
  • 12. Joosten HMLJ, Stadhouders J (1987): Conditions allowing the formation of biogenic amines in cheese. 1. decarboxylative properties of starter bacteria. Neth Milk Dairy J, 41, 247-258.
  • 13. Kantaria UD, Gokani RH (2011): Quality and safety of biogenic amines. Int J Res Pharm Biomed Sci, 2, 1461-1468.
  • 14. Kim SH, Ben-Gigirey B, Barros-Velazquez J, et al (2000): Histamine and biogenic amine production by Morganella morganii isolated from temperature-abused albacore. J Food Prot, 63, 244-251.
  • 15. Komprda T, Burdychová R, Dohnal V, et al (2008): Tyramine production in Dutch-type semi-hard cheese from two different producers. Food Microbiol, 25, 219–227.
  • 16. Ladero V, Calles-Enríquez M, Fernández M, et al (2010): Toxicological effects of dietary biogenic amines. Curr Nutr Food Sci, 6, 145-156.
  • 17. Lehane L, Olley J (2000): Histamine fish poisoning revisited. Int J Food Microbiol, 58, 1–37.
  • 18. Linares DM, Martín M, Ladero V, et al (2011): Biogenic amines in dairy products. Crit Rev Food Sci, 51, 691-703.
  • 19. López-Sabater EI, Rodríguez-Jerez J, Hernández-Herrero M, et al (1996): Incidence of histamine-forming bacteria and histamine content in scombroid fish species from retail markets in the Barcelona area. Int J Food Microbiol, 28, 411-418.
  • 20. Lopez-Sabater EI, Rodriguez-Jerez JJ, Roig-Sagues AX, et al (1994): Bacteriological quality of tuna fish (Thunnus thynnus) destined for canning: effect of tuna handling on presence of histidine decarboxylase bacteria and histamine level. J Food Prot, 57, 318-323.
  • 21. Loser C (2000): Polyamines in human and animal milk. Br J Nutr, 84, 55-58.
  • 22. Lucas P, Landete J, Coton M, et al (2003): The tyrosine decarboxylase operon of Lactobacillus brevis IOEB 9809: characterization and conservation in tyramine-producing bacteria. FEMS Microbiol Lett, 229, 65-71.
  • 23. Maijala RL (1993): Formation of histamine and tyramine by some lactic acid bacteria in MRS broth and modified decarboxylation agar. Lett Appl Microbiol, 17, 40-43.
  • 24. Mangia NP, Trani A, Di Luccia A, et al (2013): Effect of the use of autochthonous Lactobacillus curvatus, Lactobacillus plantarum and Staphylococcus xylosus strains on microbiological and biochemical properties of the Sardinian fermented sausage. Eur Food Res Technol, 236, 557-566.
  • 25. Marcobal A, de las Rivas B, Moreno-Arribas MV, et al (2005): Multiplex PCR method for the simultaneous detection of histamine-, tyramine-, and putrescine-producing lactic acid bacteria in foods. J Food Prot, 68, 874-878.
  • 26. Marcobal A, Martín-Álvarez PJ, Moreno-Arribas MV, et al (2006): A multifactorial design for studying factors influencing growth and tyramine production of the lactic acid bacteria Lactobacillus brevis CECT4669 and Enterococcus faecium BIFI-58. Res Microbiol, 157, 417–424.
  • 27. Marino M, Maifreni M, Moret S, et al (2000): The capacity of Enterobacteriaceae species to produce biogenic amines in cheese. Lett Appl Microbiol, 31, 169-173.
  • 28. Mazzoli R, Lamberti C, Coissson JD, et al (2009): Influence of ethanol, malate and arginine on histamine production of Lactobacillus hilgardii isolated from an Italian red wine. Amino Acids, 36, 81–89.
  • 29. Muñoz-Atienza E, Landeta G, de las Rivas B, et al (2011): Phenotypic and genetic evaluations of biogenic amine production by lactic acid bacteria isolated from fish and fish products. Int J Food Microbiol, 146, 212–216.
  • 30. Niven CF, Jeffrey MB, Corlett DA (1981): Differential plating medium for quantitative detection of histamine-producing bacteria. Appl Environ Microbiol, 41, 321-322.
  • 31. Özbay Doğu S, Sarıçoban C (2015): Balık ve balık ürünlerinde biyojen aminler ve önemi. KSÜ Doğa Bil Derg, 18, 19-28.
  • 32. Özoğul F, Küley E, Özoğul, Y (2004): Balık ve balık ürünlerinde oluşan biyojen aminler. Su Ürünleri Dergisi, 21, 375-381.
  • 33. Pascual-Anderson MR, Calderen-Pascual V (2000): Microbiologa Alimentaria. Metodologia Para Alimentos Y Bebidas. Diaz de Santos, S.A., Madrid, Spain.
  • 34. Pons-Sánchez-Cascado S, Vidal-Carou MC, Mariné-Font A, et al (2005). Influence of the freshness grade of raw fish on the formation of volatile and biogenic amines during the manufacture and storage of vinegar-marinated anchovies. J Agric Food Chem, 53, 8586-8592.
  • 35. Silla Santos MH (1996): Biogenic amines: their importance in foods. Int J Food Microbiol, 29, 213-231.
  • 36. Spano G, Russo P, Lonvaud-Funel A, et al (2010): Biogenic amines in fermented foods. Eur J Clin Nutr, 64, 95–100.
  • 37. Takahashi H, Kimura B, Yoshikawa M, et al (2003): Cloning and sequencing of the histidine decarboxylase genes of gram-negative, histamine-producing bacteria and their application in detection and identification of these organisms in fish. Appl Environ Microbiol, 69, 2568–2579.
  • 38. Ten Brink B, Damink C, Joosten HMJL, et al (1990): Occurrence and formation of biologically active amines in foods. Int J Food Microbiol, 11, 73–84.
  • 39. Veciana Nogués MT, Vidal Carou MC, Marine Font A (1989): Histamine and tyramine in preserved and semi preserved fish products. J Food Sci, 54, 1653-1655.
  • 40. Vidal-Carou MC, Izquierdo-Pulido ML, Martin-Morro MC (1990): Histamine and tyramine in meat products: relationship with meat spoilage. Food Chem, 37, 239-249.
  • 41. Yoshinaga DH, Frank HA (1982): Histamine-producing bacteria in decomposing skipjack tuna (Katsuwonus pelamis). Appl Environ Microbiol, 44, 447-452. nviron Microbiol, 44, 447-452.
There are 41 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Research Article
Authors

Yağmur Nil Doğan 0000-0002-1309-0936

Şebnem Pamuk 0000-0001-7227-3364

Zeki Gürler 0000-0002-9037-2945

Publication Date September 1, 2020
Published in Issue Year 2020Volume: 67 Issue: 4

Cite

APA Doğan, Y. N., Pamuk, Ş., & Gürler, Z. (2020). Histidine and tyrosine decarboxylase activities of lactic acid bacteria in sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax). Ankara Üniversitesi Veteriner Fakültesi Dergisi, 67(4), 343-347. https://doi.org/10.33988/auvfd.601699
AMA Doğan YN, Pamuk Ş, Gürler Z. Histidine and tyrosine decarboxylase activities of lactic acid bacteria in sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax). Ankara Univ Vet Fak Derg. September 2020;67(4):343-347. doi:10.33988/auvfd.601699
Chicago Doğan, Yağmur Nil, Şebnem Pamuk, and Zeki Gürler. “Histidine and Tyrosine Decarboxylase Activities of Lactic Acid Bacteria in Sea Bream (Sparus Aurata) and Sea Bass (Dicentrarchus Labrax)”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 67, no. 4 (September 2020): 343-47. https://doi.org/10.33988/auvfd.601699.
EndNote Doğan YN, Pamuk Ş, Gürler Z (September 1, 2020) Histidine and tyrosine decarboxylase activities of lactic acid bacteria in sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax). Ankara Üniversitesi Veteriner Fakültesi Dergisi 67 4 343–347.
IEEE Y. N. Doğan, Ş. Pamuk, and Z. Gürler, “Histidine and tyrosine decarboxylase activities of lactic acid bacteria in sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax)”, Ankara Univ Vet Fak Derg, vol. 67, no. 4, pp. 343–347, 2020, doi: 10.33988/auvfd.601699.
ISNAD Doğan, Yağmur Nil et al. “Histidine and Tyrosine Decarboxylase Activities of Lactic Acid Bacteria in Sea Bream (Sparus Aurata) and Sea Bass (Dicentrarchus Labrax)”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 67/4 (September 2020), 343-347. https://doi.org/10.33988/auvfd.601699.
JAMA Doğan YN, Pamuk Ş, Gürler Z. Histidine and tyrosine decarboxylase activities of lactic acid bacteria in sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax). Ankara Univ Vet Fak Derg. 2020;67:343–347.
MLA Doğan, Yağmur Nil et al. “Histidine and Tyrosine Decarboxylase Activities of Lactic Acid Bacteria in Sea Bream (Sparus Aurata) and Sea Bass (Dicentrarchus Labrax)”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol. 67, no. 4, 2020, pp. 343-7, doi:10.33988/auvfd.601699.
Vancouver Doğan YN, Pamuk Ş, Gürler Z. Histidine and tyrosine decarboxylase activities of lactic acid bacteria in sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax). Ankara Univ Vet Fak Derg. 2020;67(4):343-7.