Hafif Covid-19 Geçiren Bireylerin Solunum Fonksiyon Parametrelerinin, Enfekte Olmamiş Kontrol Grubu İle Karşılaştırılması ÖZ
Year 2023,
, 55 - 64, 30.09.2023
Murat Koç
,
Muhammed Öniz
,
Betül Coşkun
,
Nazmi Sarıtaş
Abstract
Purpose: The COVID-19 epidemic especially attacks the immune and respiratory system, causing intensive care and deaths. Even if the post-illness tests of COVID-19 patients are negative, the effects, especially related to respiratory system, defined as post-covid-19 may continue. The objective of this study is to compare the body composition and chosen respiratory parameters between the adults surviving the disease mildly and their non-infected counterparts.
Material and Methods: 60 sedentary adults (positive n=12 and negative n=24 male; positive n=15 and negative n=9 female) participated in the study voluntarily. The groups were named as positive (in the last 6 months) and negative (non-infected). Body composition and respiratory parameters such as vital capacity, forced vital capacity, forced expiratory volume in one second, forced expiratory flow between 25%-75% of vital capacity, tiffeneau index and peak expiratory flow rate measurements were taken.
Results: According to the Independent samples t-test results, no statistically significant difference was found between the spirometric values of the sedentary adults who had COVID-19 six months ago and their non-infected counterparts (p>0.05).
Conclusion: As a result of the study, it is believed that the respiratory functions of the patients who survived COVID-19 mildly may have returned to normal after 6 months.
References
- Al Ghobain, M. O., Alhamad, E. H., Alorainy, H. S., Al Hazmi, M., Al Moamary, M. S., Al-Hajjaj, M. S., . . . Zeitouni, M. J. T. c. r. j. (2014). Spirometric reference values for healthy nonsmoking S audi adults. 8(1), 72-78.
- Behrens, G., Matthews, C. E., Moore, S. C., Hollenbeck, A. R., & Leitzmann, M. F. (2014). Body size and physical activity in relation to incidence of chronic obstructive pulmonary disease. Cmaj, 186(12), E457-E469. doi:https://doi. org/10.1503/cmaj.140025
- Clavario, P., De Marzo, V., Lotti, R., Barbara, C., Porcile, A., Russo, C., . . . Caltabellotta, M. (2020). Assessment of functional capacity with cardiopulmonary exercise testing in non-severe COVID-19 patients at three months follow-up. MedRxiv. doi:https://doi.org/10.1101/2020.11.15.20231985
- De Graaf, M. A., Antoni, M. L., ter Kuile, M. M., Arbous, M. S., Duinisveld, A. J. F., Feltkamp, M. C. W., . . . Roukens, A. H. E. (2021). Short-term outpatient follow-up of COVID-19 patients: A multidisciplinary approach. EClinicalMedicine, 32, 100731. doi:https://doi.org/10.1016/j.eclinm.2021.100731
- Enright, P. L., Connett, J. E., & Bailey, W. (2002). The FEV1/ FEV6 predicts lung function decline in adult smokers. Respiratory medicine, 96(6), 444-449.
- Fumagalli, A., Misuraca, C., Bianchi, A., Borsa, N., Limonta, S., Maggiolini, S., . . . Colombo, D. (2021). Pulmonary function in patients surviving to COVID-19 pneumonia. Infection, 49(1), 153-157. doi:10.1007/s15010-020-01474-9
- Gandhi, R. T., Lynch, J. B., & Del Rio, C. (2020). Mild or moderate Covid-19. New England Journal of Medicine, 383(18), 1757- 1766. doi:https://doi.org/10.1056/NEJMcp2009249
- Hankinson, J. L., Odencrantz, J. R., & Fedan, K. B. (1999). Spirometric reference values from a sample of the general US population. American journal of respiratory and critica care medicine, 159(1), 179-187.
- Hazarika, A., Mahajan, V., Kajal, K., Ray, A., Singla, K., Sehgal, I. S., . . . Kaloria, N. (2021). Pulmonary function, mental and physical health in recovered COVID-19 patients requiring invasive versus non-invasive oxygen therapy: A prospective follow-up study post-ICU discharge. Cureus, 13(9).
- Ip, M. S.-m., Wai-san Ko, F., Lau, A. C.-w., Yu, W.-c., Tang, K.- s., Choo, K., & Chan-Yeung, M. M.-w. J. C. (2006). Updated spirometric reference values for adult Chinese in Hong Kong and implications on clinical utilization. 129(2), 384- 392.
- Ischaki, E., Papatheodorou, G., Gaki, E., Papa, I., Koulouris, N., & Loukides, S. (2007). Body mass and fat-free mass indices in COPD: relation with variables expressing disease severity. Chest, 132(1), 164-169.
- Jing, J.-y., Huang, T.-c., Cui, W., Xu, F., & Shen, H.-h. J. C. (2009). Should FEV1/FEV6 replace FEV1/FVC ratio to detect airway obstruction?: a metaanalysis. 135(4), 991-998.
- Lai, C.-C., Liu, Y. H., Wang, C.-Y., Wang, Y.-H., Hsueh, S.-C., Yen, M.-Y., . . . Hsueh, P.-R. (2020). Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. Journal of Microbiology, Immunology and Infection, 53(3), 404-412. doi:https://doi.org/10.1016/j. jmii.2020.02.012
- Liao, X., Wang, Y., He, Z., Yun, Y., Hu, M., Ma, Z., . . . Liu, L. (2020). Three-Month Pulmonary Function and Radiological Outcomes in COVID-19 Survivors: A Longitudinal Patient Cohort Study. Open Forum Infectious Diseases, 8(9). doi:10.1093/ofid/ofaa540
- Lombardi, F., Calabrese, A., Iovene, B., Pierandrei, C., Lerede, M., Varone, F., . . . the Gemelli Against, C.-P.-A. C. S. G. (2021). Residual respiratory impairment after COVID-19 pneumonia. BMC Pulmonary Medicine, 21(1), 241. doi:10.1186/ s12890-021-01594-4
- Marseglia, G. L., Cirillo, I., Vizzaccaro, A., Klersy, C., Tosca, M. A., La Rosa, M., . . . Ciprandi, G. (2007). Role of forced expiratory flow at 25-75% as an early marker of small airways impairment in subjects with allergic rhinitis. Allergy Asthma Proc, 28(1), 74-78. doi:10.2500/aap.2007.28.2920
- Memon, M. A., Sandila, M. P., & Ahmed, S. T. (2007). Spirometric reference values in healthy, non-smoking, urban Pakistani population. J JPMA The Journal of the Pakistan Medical Association, 57(4), 193.
- Méndez, R., Latorre, A., González-Jiménez, P., Feced, L., Bouzas, L., Yépez, K., . . . Menéndez, R. J. A. o. t. A. T. S. (2021). Reduced diffusion capacity in COVID-19 survivors. (ja).
- Mrindha, M. A.-A., Amin, M. R., & Kabir, A. L. (2011). Peak expiratory flow rate (PEFR)-A simple ventilatory lung function test. Journal of Shaheed Suhrawardy Medical College, 3(2), 44-47.
- Oronsky, B., Larson, C., Hammond, T. C., Oronsky, A., Kesari, S., Lybeck, M., & Reid, T. R. (2021). A review of persistent post-COVID syndrome (PPCS). Clinical reviews in allergy immunology, 1-9. doi:https://doi.org/10.1007/s12016-021- 08848-3
- Padmavathy, K. (2008). Comparative study of pulmonary function variables in relation to type of smoking. Indian J Physiol Pharmacol, 52(2), 193-196.
- Park, J. E., Chung, J. H., Lee, K. H., & Shin, K. C. (2012). The effect of body composition on pulmonary function. Tuberculosis and respiratory diseases, 72(5), 433-440.
- Pouragha, H., Kazemi, H., Pouryaghoub, G., & Mehrdad, R. (2020). Association Between Body Composition with Pulmonary Function Tests.
- Qin, W., Chen, S., Zhang, Y., Dong, F., Zhang, Z., Hu, B., . . . Wang, Y. J. E. R. J. (2021). Diffusion capacity abnormalities for carbon monoxide in patients with COVID-19 at three-month follow-up.
- Quanjer, P. H., Weiner, D. J., Pretto, J. J., Brazzale, D. J., & Boros, P. W. J. E. R. J. (2014). Measurement of FEF25–75% and FEF75% does not contribute to clinical decision making. 43(4), 1051-1058.
- Ranu, H., Wilde, M., & Madden, B. (2011). Pulmonary function tests. The Ulster medical journal, 80(2), 84.
- Thomas, M., Price, O. J., & Hull, J. H. (2021). Pulmonary function and COVID-19. Current Opinion in Physiology, 21, 29-35. doi:https://doi.org/10.1016/j.cophys.2021.03.005
Thomas, M., Price, O. J., & Hull, J. H. (2021). Pulmonary function and COVID-19. Curr Opin Physiol, 21, 29-35. doi:10.1016/j. cophys.2021.03.005
- van den Borst, B., Peters, J. B., Brink, M., Schoon, Y., Bleeker- Rovers, C. P., Schers, H., . . . van der Hoeven, H. J. C. I. D. (2021). Comprehensive health assessment 3 months after recovery from acute coronavirus disease 2019 (COVID-19). 73(5), e1089-e1098. doi:https://doi.org/10.1093/cid/ciaa1750
- Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., . . . Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. Jama, 323(11), 1061-1069. doi:https://doi. org/10.1001/jama.2020.1585
- WHO. Coronavirus disease (COVID-19). Retrieved from https:// www.who.int/health-topics/coronavirus#tab=tab_3
- Zitek, T. (2020). The appropriate use of testing for COVID-19. Western Journal of Emergency Medicine, 21(3), 470.
- Stampfer M, Hu B, Manson JE, Rimm EB, and Willett WC.(2000). Primary Prevention of Coronary Heart Disease in Women through Diet and Lifestyle. New England Journal of Medicine; 343(1):16-22.
- Türkan F, Huyut Z, Taslimi, Gülçin İ.(2018a). The effects of some antibiotics from cephalospor in groups on the acetylcholinesterase and but yrylcholinesterase enzymes activities in different tissues of rats. Journal Archives of Physiology and Biochemistry, https://doi.org/10.1080/13813 455.2018.1427766.
- Türkan F,Huyut.,Taslimi P, Gülçin İ.(2018b). The in vivo effects of cefazolin, cefuroxime, and cefoperazon on the carbonicanhydrase in different rat tissues. J Biochem Mol Toxicol, 32 (3), e22041.
- Weintraub MS, Zechner R., Brown A, Eisenberg S, Breslow JL.(1988). Dietary polyunsaturated fats of the W-6 and W-3 series reduce post prandial lipoprotein levels. Chronic and acute effects of fat saturation on post prandial lipoprotein metabolism. J Clin Invest,82 (6), 1884–93.
- Witayavanitkul N, Werawatganon D, Chayanupatkul M, Klaikeaw N, Sanguanrungsirikul S, and Siriviriyakul P.(2020). Genistein and exercise modulated lipid peroxidation and improved steatohepatitis in ovariectomized rats.BMC Complement Med Ther. 20: 162 Published online 2020 Jun 1. doi: 10.1186/s12906-020-02962-z.
A Comparison Of Respiratory Function Parameters Of The Individuals Recovered From Mild Covid-19 And Their Non-Infected Counterparts
Year 2023,
, 55 - 64, 30.09.2023
Murat Koç
,
Muhammed Öniz
,
Betül Coşkun
,
Nazmi Sarıtaş
Abstract
Purpose: The COVID-19 epidemic especially attacks the immune and respiratory system, causing intensive care and deaths. Even if the post-illness tests of COVID-19 patients are negative, the effects, especially related to respiratory system, defined as post-covid-19 may continue. The objective of this study is to compare the body composition and chosen respiratory parameters between the adults surviving the disease mildly and their non-infected counterparts.
Material and Methods: 60 sedentary adults (positive n=12 and negative n=24 male; positive n=15 and negative n=9 female) participated in the study voluntarily. The groups were named as positive (in the last 6 months) and negative (non-infected). Body composition and respiratory parameters such as vital capacity, forced vital capacity, forced expiratory volume in one second, forced expiratory flow between 25%-75% of vital capacity, tiffeneau index and peak expiratory flow rate measurements were taken.
Results: According to the Independent samples t-test results, no statistically significant difference was found between the spirometric values of the sedentary adults who had COVID-19 six months ago and their non-infected counterparts (p>0.05).
Conclusion: As a result of the study, it is believed that the respiratory functions of the patients who survived COVID-19 mildly may have returned to normal after 6 months.
References
- Al Ghobain, M. O., Alhamad, E. H., Alorainy, H. S., Al Hazmi, M., Al Moamary, M. S., Al-Hajjaj, M. S., . . . Zeitouni, M. J. T. c. r. j. (2014). Spirometric reference values for healthy nonsmoking S audi adults. 8(1), 72-78.
- Behrens, G., Matthews, C. E., Moore, S. C., Hollenbeck, A. R., & Leitzmann, M. F. (2014). Body size and physical activity in relation to incidence of chronic obstructive pulmonary disease. Cmaj, 186(12), E457-E469. doi:https://doi. org/10.1503/cmaj.140025
- Clavario, P., De Marzo, V., Lotti, R., Barbara, C., Porcile, A., Russo, C., . . . Caltabellotta, M. (2020). Assessment of functional capacity with cardiopulmonary exercise testing in non-severe COVID-19 patients at three months follow-up. MedRxiv. doi:https://doi.org/10.1101/2020.11.15.20231985
- De Graaf, M. A., Antoni, M. L., ter Kuile, M. M., Arbous, M. S., Duinisveld, A. J. F., Feltkamp, M. C. W., . . . Roukens, A. H. E. (2021). Short-term outpatient follow-up of COVID-19 patients: A multidisciplinary approach. EClinicalMedicine, 32, 100731. doi:https://doi.org/10.1016/j.eclinm.2021.100731
- Enright, P. L., Connett, J. E., & Bailey, W. (2002). The FEV1/ FEV6 predicts lung function decline in adult smokers. Respiratory medicine, 96(6), 444-449.
- Fumagalli, A., Misuraca, C., Bianchi, A., Borsa, N., Limonta, S., Maggiolini, S., . . . Colombo, D. (2021). Pulmonary function in patients surviving to COVID-19 pneumonia. Infection, 49(1), 153-157. doi:10.1007/s15010-020-01474-9
- Gandhi, R. T., Lynch, J. B., & Del Rio, C. (2020). Mild or moderate Covid-19. New England Journal of Medicine, 383(18), 1757- 1766. doi:https://doi.org/10.1056/NEJMcp2009249
- Hankinson, J. L., Odencrantz, J. R., & Fedan, K. B. (1999). Spirometric reference values from a sample of the general US population. American journal of respiratory and critica care medicine, 159(1), 179-187.
- Hazarika, A., Mahajan, V., Kajal, K., Ray, A., Singla, K., Sehgal, I. S., . . . Kaloria, N. (2021). Pulmonary function, mental and physical health in recovered COVID-19 patients requiring invasive versus non-invasive oxygen therapy: A prospective follow-up study post-ICU discharge. Cureus, 13(9).
- Ip, M. S.-m., Wai-san Ko, F., Lau, A. C.-w., Yu, W.-c., Tang, K.- s., Choo, K., & Chan-Yeung, M. M.-w. J. C. (2006). Updated spirometric reference values for adult Chinese in Hong Kong and implications on clinical utilization. 129(2), 384- 392.
- Ischaki, E., Papatheodorou, G., Gaki, E., Papa, I., Koulouris, N., & Loukides, S. (2007). Body mass and fat-free mass indices in COPD: relation with variables expressing disease severity. Chest, 132(1), 164-169.
- Jing, J.-y., Huang, T.-c., Cui, W., Xu, F., & Shen, H.-h. J. C. (2009). Should FEV1/FEV6 replace FEV1/FVC ratio to detect airway obstruction?: a metaanalysis. 135(4), 991-998.
- Lai, C.-C., Liu, Y. H., Wang, C.-Y., Wang, Y.-H., Hsueh, S.-C., Yen, M.-Y., . . . Hsueh, P.-R. (2020). Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. Journal of Microbiology, Immunology and Infection, 53(3), 404-412. doi:https://doi.org/10.1016/j. jmii.2020.02.012
- Liao, X., Wang, Y., He, Z., Yun, Y., Hu, M., Ma, Z., . . . Liu, L. (2020). Three-Month Pulmonary Function and Radiological Outcomes in COVID-19 Survivors: A Longitudinal Patient Cohort Study. Open Forum Infectious Diseases, 8(9). doi:10.1093/ofid/ofaa540
- Lombardi, F., Calabrese, A., Iovene, B., Pierandrei, C., Lerede, M., Varone, F., . . . the Gemelli Against, C.-P.-A. C. S. G. (2021). Residual respiratory impairment after COVID-19 pneumonia. BMC Pulmonary Medicine, 21(1), 241. doi:10.1186/ s12890-021-01594-4
- Marseglia, G. L., Cirillo, I., Vizzaccaro, A., Klersy, C., Tosca, M. A., La Rosa, M., . . . Ciprandi, G. (2007). Role of forced expiratory flow at 25-75% as an early marker of small airways impairment in subjects with allergic rhinitis. Allergy Asthma Proc, 28(1), 74-78. doi:10.2500/aap.2007.28.2920
- Memon, M. A., Sandila, M. P., & Ahmed, S. T. (2007). Spirometric reference values in healthy, non-smoking, urban Pakistani population. J JPMA The Journal of the Pakistan Medical Association, 57(4), 193.
- Méndez, R., Latorre, A., González-Jiménez, P., Feced, L., Bouzas, L., Yépez, K., . . . Menéndez, R. J. A. o. t. A. T. S. (2021). Reduced diffusion capacity in COVID-19 survivors. (ja).
- Mrindha, M. A.-A., Amin, M. R., & Kabir, A. L. (2011). Peak expiratory flow rate (PEFR)-A simple ventilatory lung function test. Journal of Shaheed Suhrawardy Medical College, 3(2), 44-47.
- Oronsky, B., Larson, C., Hammond, T. C., Oronsky, A., Kesari, S., Lybeck, M., & Reid, T. R. (2021). A review of persistent post-COVID syndrome (PPCS). Clinical reviews in allergy immunology, 1-9. doi:https://doi.org/10.1007/s12016-021- 08848-3
- Padmavathy, K. (2008). Comparative study of pulmonary function variables in relation to type of smoking. Indian J Physiol Pharmacol, 52(2), 193-196.
- Park, J. E., Chung, J. H., Lee, K. H., & Shin, K. C. (2012). The effect of body composition on pulmonary function. Tuberculosis and respiratory diseases, 72(5), 433-440.
- Pouragha, H., Kazemi, H., Pouryaghoub, G., & Mehrdad, R. (2020). Association Between Body Composition with Pulmonary Function Tests.
- Qin, W., Chen, S., Zhang, Y., Dong, F., Zhang, Z., Hu, B., . . . Wang, Y. J. E. R. J. (2021). Diffusion capacity abnormalities for carbon monoxide in patients with COVID-19 at three-month follow-up.
- Quanjer, P. H., Weiner, D. J., Pretto, J. J., Brazzale, D. J., & Boros, P. W. J. E. R. J. (2014). Measurement of FEF25–75% and FEF75% does not contribute to clinical decision making. 43(4), 1051-1058.
- Ranu, H., Wilde, M., & Madden, B. (2011). Pulmonary function tests. The Ulster medical journal, 80(2), 84.
- Thomas, M., Price, O. J., & Hull, J. H. (2021). Pulmonary function and COVID-19. Current Opinion in Physiology, 21, 29-35. doi:https://doi.org/10.1016/j.cophys.2021.03.005
Thomas, M., Price, O. J., & Hull, J. H. (2021). Pulmonary function and COVID-19. Curr Opin Physiol, 21, 29-35. doi:10.1016/j. cophys.2021.03.005
- van den Borst, B., Peters, J. B., Brink, M., Schoon, Y., Bleeker- Rovers, C. P., Schers, H., . . . van der Hoeven, H. J. C. I. D. (2021). Comprehensive health assessment 3 months after recovery from acute coronavirus disease 2019 (COVID-19). 73(5), e1089-e1098. doi:https://doi.org/10.1093/cid/ciaa1750
- Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., . . . Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. Jama, 323(11), 1061-1069. doi:https://doi. org/10.1001/jama.2020.1585
- WHO. Coronavirus disease (COVID-19). Retrieved from https:// www.who.int/health-topics/coronavirus#tab=tab_3
- Zitek, T. (2020). The appropriate use of testing for COVID-19. Western Journal of Emergency Medicine, 21(3), 470.
- Stampfer M, Hu B, Manson JE, Rimm EB, and Willett WC.(2000). Primary Prevention of Coronary Heart Disease in Women through Diet and Lifestyle. New England Journal of Medicine; 343(1):16-22.
- Türkan F, Huyut Z, Taslimi, Gülçin İ.(2018a). The effects of some antibiotics from cephalospor in groups on the acetylcholinesterase and but yrylcholinesterase enzymes activities in different tissues of rats. Journal Archives of Physiology and Biochemistry, https://doi.org/10.1080/13813 455.2018.1427766.
- Türkan F,Huyut.,Taslimi P, Gülçin İ.(2018b). The in vivo effects of cefazolin, cefuroxime, and cefoperazon on the carbonicanhydrase in different rat tissues. J Biochem Mol Toxicol, 32 (3), e22041.
- Weintraub MS, Zechner R., Brown A, Eisenberg S, Breslow JL.(1988). Dietary polyunsaturated fats of the W-6 and W-3 series reduce post prandial lipoprotein levels. Chronic and acute effects of fat saturation on post prandial lipoprotein metabolism. J Clin Invest,82 (6), 1884–93.
- Witayavanitkul N, Werawatganon D, Chayanupatkul M, Klaikeaw N, Sanguanrungsirikul S, and Siriviriyakul P.(2020). Genistein and exercise modulated lipid peroxidation and improved steatohepatitis in ovariectomized rats.BMC Complement Med Ther. 20: 162 Published online 2020 Jun 1. doi: 10.1186/s12906-020-02962-z.