PROBLEMS AND OPPORTUNITIES OF ARTIFICIAL INTELLIGENCE
Yıl 2022,
Cilt: 13 Sayı: 1, 203 - 225, 30.06.2022
Necmi Gürsakal
,
Sadullah Çelik
,
Bülent Batmaz
Öz
This article reviews Artificial Intelligence (AI)’s challenges and opportunities and discusses where AI might be headed. In the first part of the article, it was tried to reveal the differences between Symbolic AI and Deep Learning approaches, then long promises but short deliveries of AI were mentioned. When we review the problems of AI in general terms, it is a problem that the media has high expectations about AI and keeps the problems and restrictions it creates low. Today, while AI is stuck with issues such as deepfake applications and carbon footprints that create moral and climatologic problems; on the other hand, it is struggling with problems such as deep learning models requiring huge amounts of data. Another problem with deep learning is that deep learning models are a black-box and not open to improvements because it is not known where mistakes were made. Among the new paths ahead of AI are Hierarchical Temporal Memory (HTM) models and hybrid models that generally try to bridge the gap between Symbolic AI and Connectionist AI. If we consider that the most important leaps in AI have been made with the features of the brain that AI can imitate, then the developed HTM models may also be a new opportunity for AI.
Kaynakça
- Abid, A., Farooqi, M., & Zou, J. (2021). Persistent Anti-Muslim Bias in Large Language Models. Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, 298–306. https://doi.org/10.1145/3461702.3462624
- Ahmad, S., & Scheinkman, L. (2019). How Can We Be So Dense? The Benefits of Using Highly Sparse Representations.
- Barlow, H. B. (1961). Possible Principles Underlying the Transformations of Sensory Messages. In W. A. Rosenblith (Ed.), Sensory Communication. https://www.cnbc.cmu.edu/~tai/microns_papers/Barlow-SensoryCommunication-1961.pdf
- Bathaee, Y. (2018). The Artificial Intelligence Black Box and the Failure of Intent and Causation. Harvard Journal of Law & Technology (Harvard JOLT), 31. https://heinonline.org/HOL/Page?handle=hein.journals/hjlt31&id=907&div=&collection=
- Bautista, I., Sarkar, S., & Bhanja, S. (2020). MatlabHTM: A sequence memory model of neocortical layers for anomaly detection. SoftwareX, 11, 100491. https://doi.org/10.1016/j.softx.2020.100491
- Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the Dangers of Stochastic Parrots. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 610–623. https://doi.org/10.1145/3442188.3445922
- Bengio, Y. (2022, January 24). Superintelligence: Futurology vs. Science. https://yoshuabengio.org/2022/01/24/superintelligence-futurology-vs-science/
- Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., Arx, S. von, Rernstein, M. S., & Liang, P. (2021). On the opportunities and risks of foundation models. https://arxiv.org/pdf/2108.07258.pdf?utm_source=morning_brew
- Brundage, M., Avin, S., Clark, J., Toner, H., Eckersley, P., Garfinkel, B., Dafoe, A., Scharre, P., Zeitzoff, T., Filar, B., Anderson, H., Roff, H., Allen, G. C., Steinhardt, J., Flynn, C., Héigeartaigh, S. Ó., Beard, S., Belfield, H., Farquhar, S., … Amodei, D. (2018). The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation. https://arxiv.org/ftp/arxiv/papers/1802/1802.07228.pdf
- Buhrmester, V., Münch, D., & Arens, M. (2021). Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey. Machine Learning and Knowledge Extraction, 3(4), 966–989. https://doi.org/10.3390/make3040048
- Byrne, F. (2015). Encoding reality: prediction-assisted cortical learning algorithm in hierarchical temporal memory. https://arxiv.org/pdf/1509.08255.pdf
- Chaudhuri, S., Ellis, K., Polozov, O., Singh, R., Solar-Lezama, A., & Yue, Y. (2021). Neurosymbolic Programming. Foundations and Trends® in Programming Languages, 7(3), 158–243. https://doi.org/10.1561/2500000049
- Dickson, B. (2019, June 5). What happens when you combine neural networks and rule-based AI? . https://bdtechtalks.com/2019/06/05/mit-ibm-hybrid-ai/
- Dickson, B. (2022, March 14). Neuro-symbolic AI brings us closer to machines with common sense. https://bdtechtalks.com/2022/03/14/neuro-symbolic-ai-common-sense/
- Egri-Nagy, A., & Törmänen, A. (2022). Advancing Human Understanding with Deep Learning Go AI Engines. IS4SI 2021, 22. https://doi.org/10.3390/proceedings2022081022
- Feldman, P., Dant, A., & Massey, A. (2019). Integrating Artificial Intelligence into Weapon Systems.
- Fraternali, P., Milani, F., Nahime Torres, R., Zangrando, N., & di Milano Piazza Leonardo, P. (2022). Black-box error diagnosis in deep neural networks: a survey of tools.
- Garcez, A. S. d’Avila, Broda, K., & Gabbay, D. M. (2002). Neural-Symbolic Learning Systems: Foundations and Applications . Springer Science & Business Media. https://books.google.com.tr/books?hl=tr&lr=&id=6NZYVSOyD-UC&oi=fnd&pg=PA1&dq=Garcez+A.+S.+d.,+K.+B.+Broda,+D.+M.+Gabbay,+Neuralsymbolic+learning+systems:+foundations+and+applications,+2002,++Springer+Science+%26+Business+Media.&ots=sUdRBFNTa8&sig=EA0zcWKtyfTS-GNs_uZXIiG3Y_I&redir_esc=y#v=onepage&q&f=false
- Hao, K. (2019, June 6). Training a single AI model can emit as much carbon as five cars in their lifetimes. https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
- Hawkins, J. (2021). A Thousand Brains: A New Theory of Intelligence Hardcover.
- Hawkins, J., & Ahmad, S. (2016). Why Neurons Have Thousands of Synapses, a Theory of Sequence Memory in Neocortex. Frontiers in Neural Circuits, 10. https://doi.org/10.3389/fncir.2016.00023
- Hawkins, J., & Blakeslee, S. (2004). On Intelligence. Owl Books/Times Books.
- Hawkins, J., Lewis, M., Klukas, M., Purdy, S., & Ahmad, S. (2019). A Framework for Intelligence and Cortical Function Based on Grid Cells in the Neocortex. Frontiers in Neural Circuits, 12. https://doi.org/10.3389/fncir.2018.00121
- Hoover, A. K., Spryszynski, A., & Halper, M. (2019). Deep Learning in the IT Curriculum. Proceedings of the 20th Annual SIG Conference on Information Technology Education, 49–54. https://doi.org/10.1145/3349266.3351406
- Kahneman, D. (2011). Thinking, fast and slow. http://103.38.12.142:8081/jspui/bitstream/123456789/541/1/Thinking%2C%20Fast%20and%20Slow.pdf
- Kahneman, D. (2012). Of 2 Minds: How Fast and Slow Thinking Shape Perception and Choice [Excerpt] . Scientific American.
- Krestinskaya, O., Ibrayev, T., & James, A. P. (2018). Hierarchical Temporal Memory Features with Memristor Logic Circuits for Pattern Recognition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(6), 1143–1156. https://doi.org/10.1109/TCAD.2017.2748024
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, 25. http://code.google.com/p/cuda-convnet/
- Kurfess, F. J. (2003). Artificial Intelligence. In Encyclopedia of Physical Science and Technology (pp. 609–629). Elsevier. https://doi.org/10.1016/B0-12-227410-5/00027-2
- Lacoste, A., Luccioni, A., Schmidt, V., & Dandres, T. (2019). Quantifying the Carbon Emissions of Machine Learning. https://mlco2.github.
- Lannelongue, L., Grealey, J., Inouye, M., Lannelongue, L., & Inouye, M. (2021). Green Algorithms: Quantifying the Carbon Footprint of Computation. https://doi.org/10.1002/advs.202100707
- Lehky, S. R., Tanaka, K., & Sereno, A. B. (2021). Pseudosparse neural coding in the visual system of primates. Communications Biology, 4(1), 50. https://doi.org/10.1038/s42003-020-01572-2
- Lomonaco, V. (2019, October 24). A Machine Learning Guide to HTM (Hierarchical Temporal Memory). https://numenta.com/blog/2019/10/24/machine-learning-guide-to-htm
- Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., & Wu, J. (2019, April 26). The neuro-symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision. ICLR 2019. https://arxiv.org/pdf/1904.12584.pdf
- Marcus, G. (2022, March 10). Deep Learning Is Hitting a Wall. https://nautil.us/deep-learning-is-hitting-a-wall-14467/
- Marcus, G., & Davis, E. (2020, August 22). GPT-3, Bloviator: OpenAI’s language generator has no idea what it’s talking about. https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/
- Masson-Delmotte, V., Zhai, P., Chen, Y., Goldfarb, L., Gomis, M. I., Matthews, J. B. R., Berger, S., Huang, M., Yelekçi, O., Yu, R., Zhou, B., Lonnoy, E., Maycock, T. K., Waterfield, T., Leitzell,
- K., & Caud, N. (2021). Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Edited by. www.ipcc.ch
- Mortensen, J. (2022, March 16). Is Black Box AI Dangerous? . Tech Evaluate? https://www.techevaluate.com/is-black-box-ai-dangerous/
- Naser, M. Z., & Ross, B. (2022). An opinion piece on the dos and don’ts of artificial intelligence in civil engineering and charting a path from data-driven analysis to causal knowledge discovery. Civil Engineering and Environmental Systems, 1–11. https://doi.org/10.1080/10286608.2022.2049257
- Niu, D., Yang, L., Cai, T., Li, L., Wu, X., & Wang, Z. (2022). A New Hierarchical Temporal Memory Algorithm Based on Activation Intensity. Computational Intelligence and Neuroscience, 2022, 1–17. https://doi.org/10.1155/2022/6072316
- Numenta. (2017). Biological And Machine Intelligence (BAMI). https://numenta.com/assets/pdf/biological-and-machine-intelligence/BAMI-Complete.pdf
- Olshausen, B. A., & Field, D. J. (2004). Sparse coding of sensory inputs. Current Opinion in Neurobiology, 14(4), 481–487. https://doi.org/10.1016/J.CONB.2004.07.007
- Pati, S. (2022, March 7). The Future of Artificial Intelligence and Metaverse in 2030. https://zipe-education.com/the-future-of-artificial-intelligence-and-metaverse/
- Purdue University News. (2021, March 5). Think the brain is always efficient? Think again. https://www.purdue.edu/newsroom/releases/2021/Q1/think-the-brain-is-always-efficient-think-again..HTML
- Riganelli, O., Saltarel, P., Tundo, A., Mobilio, M., & Mariani, L. (2021). Cloud Failure Prediction with Hierarchical Temporal Memory: An Empirical Assessment. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), 785–790. https://doi.org/10.1109/ICMLA52953.2021.00130
- Schuller, B. W., Akman, A., Chang, Y., Coppock, H., Gebhard, A., Kathan, A., Rituerto-González, E., Triantafyllopoulos, A., & Pokorny, F. B. (2022). Climate Change & Computer Audition: A Call To Action And Overview On Audio Intelligence To Help Save The Planet A Preprint.
- Schwartz, R., Dodge, J., Smith, N. A., & Etzioni, O. (2020). Green AI. Communications of the ACM, 63(12), 54–63. https://doi.org/10.1145/3381831
- Shah, D., Ghate, P., Paranjape, M., & Kumar, A. (2021). Application of Hierarchical Temporal Memory Theory for Document Categorization.
- Soon, O. Y., & Hui, L. K. (2022, April 16). Making artificial intelligence work for sustainability. https://technologymagazine.com/ai-and-machine-learning/making-artificial-intelligence-work-for-sustainability
- Soviany, P., Ionescu, R. T., Rota, P., & Sebe, N. (2022). Curriculum Learning: A Survey.
- Strubell, E., Ganesh, A., & Mccallum, A. (2019). Energy and Policy Considerations for Deep Learning in NLP. https://bit.ly/2JTbGnI
- Struye, J., & Latré, S. (2020). Hierarchical temporal memory and recurrent neural networks for time series prediction: An empirical validation and reduction to multilayer perceptrons. Neurocomputing, 396, 291–301. https://doi.org/10.1016/j.neucom.2018.09.098
- Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2013). Intriguing properties of neural networks. Intriguing Properties of Neural Networks. https://arxiv.org/pdf/1312.6199.pdf?source=post_page
- Taylor, P. (2022, January 24). IBM sells off large parts of Watson Health business -. https://pharmaphorum.com/news/ibm-sells-off-large-parts-of-watson-health-business/
- Thoppilan, R., Freitas, D. de, Hall, J., Kulshreshtha, A., Cheng, H.-T., Jin, A., Bos, T., Baker, L., Du, Y., Li, Y., Lee, H., Zheng, S. H., Ghafouri, A., & Le, Q. (2022). LaMDA: Language Models for Dialog Applications. https://arxiv.org/pdf/2201.08239.pdf
- Trafton, A. (2022, February 17). Dendrites may help neurons perform complicated calculations. MIT News | Massachusetts Institute of Technology. https://news.mit.edu/2022/dendrites-help-neurons-perform-0217
- Urbina, F., Lentzos, F., Invernizzi, C., & Ekins, S. (2022). Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence, 4(3), 189–191. https://doi.org/10.1038/s42256-022-00465-9
- Vale, D., El-Sharif, A., & Ali, M. (2022). Explainable artificial intelligence (XAI) post-hoc explainability methods: risks and limitations in non-discrimination law. AI and Ethics, 1, 3. https://doi.org/10.1007/s43681-022-00142-y
- Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato, J., Huang, P.-S., Cheng, M., Glaese, M., Balle, B., Kasirzadeh, A., Kenton, Z., Brown, S., Hawkins, W., Stepleton, T., Biles, C., Birhane, A., Haas, J., Rimell, L., Hendricks, L. A., … Com>, <lweidinger@deepmind. (2021). Ethical and social risks of harm from Language Models. https://arxiv.org/pdf/2112.04359.pdf
- Yang, G., Hu, E. J., Babuschkin, I., Sidor, S., Liu, X., Farhi, D., Ryder, N., Pachocki, J., Chen, W., & Gao, J. (2022). Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer.
- Zednik, C. (2021). Solving the Black Box Problem: A Normative Framework for Explainable Artificial Intelligence. Philosophy & Technology, 34(2), 265–288. https://doi.org/10.1007/s13347-019-00382-7
PROBLEMS AND OPPORTUNITIES OF ARTIFICIAL INTELLIGENCE
Yıl 2022,
Cilt: 13 Sayı: 1, 203 - 225, 30.06.2022
Necmi Gürsakal
,
Sadullah Çelik
,
Bülent Batmaz
Öz
This article reviews Artificial Intelligence (AI)’s challenges and opportunities and discusses where AI might be headed. In the first part of the article, it was tried to reveal the differences between Symbolic AI and Deep Learning approaches, then long promises but short deliveries of AI were mentioned. When we review the problems of AI in general terms, it is a problem that the media has high expectations about AI and keeps the problems and restrictions it creates low. Today, while AI is stuck with issues such as deepfake applications and carbon footprints that create moral and climatologic problems; on the other hand, it is struggling with problems such as deep learning models requiring huge amounts of data. Another problem with deep learning is that deep learning models are a black-box and not open to improvements because it is not known where mistakes were made. Among the new paths ahead of AI are Hierarchical Temporal Memory (HTM) models and hybrid models that generally try to bridge the gap between Symbolic AI and Connectionist AI. If we consider that the most important leaps in AI have been made with the features of the brain that AI can imitate, then the developed HTM models may also be a new opportunity for AI.
Kaynakça
- Abid, A., Farooqi, M., & Zou, J. (2021). Persistent Anti-Muslim Bias in Large Language Models. Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, 298–306. https://doi.org/10.1145/3461702.3462624
- Ahmad, S., & Scheinkman, L. (2019). How Can We Be So Dense? The Benefits of Using Highly Sparse Representations.
- Barlow, H. B. (1961). Possible Principles Underlying the Transformations of Sensory Messages. In W. A. Rosenblith (Ed.), Sensory Communication. https://www.cnbc.cmu.edu/~tai/microns_papers/Barlow-SensoryCommunication-1961.pdf
- Bathaee, Y. (2018). The Artificial Intelligence Black Box and the Failure of Intent and Causation. Harvard Journal of Law & Technology (Harvard JOLT), 31. https://heinonline.org/HOL/Page?handle=hein.journals/hjlt31&id=907&div=&collection=
- Bautista, I., Sarkar, S., & Bhanja, S. (2020). MatlabHTM: A sequence memory model of neocortical layers for anomaly detection. SoftwareX, 11, 100491. https://doi.org/10.1016/j.softx.2020.100491
- Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the Dangers of Stochastic Parrots. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 610–623. https://doi.org/10.1145/3442188.3445922
- Bengio, Y. (2022, January 24). Superintelligence: Futurology vs. Science. https://yoshuabengio.org/2022/01/24/superintelligence-futurology-vs-science/
- Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., Arx, S. von, Rernstein, M. S., & Liang, P. (2021). On the opportunities and risks of foundation models. https://arxiv.org/pdf/2108.07258.pdf?utm_source=morning_brew
- Brundage, M., Avin, S., Clark, J., Toner, H., Eckersley, P., Garfinkel, B., Dafoe, A., Scharre, P., Zeitzoff, T., Filar, B., Anderson, H., Roff, H., Allen, G. C., Steinhardt, J., Flynn, C., Héigeartaigh, S. Ó., Beard, S., Belfield, H., Farquhar, S., … Amodei, D. (2018). The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation. https://arxiv.org/ftp/arxiv/papers/1802/1802.07228.pdf
- Buhrmester, V., Münch, D., & Arens, M. (2021). Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey. Machine Learning and Knowledge Extraction, 3(4), 966–989. https://doi.org/10.3390/make3040048
- Byrne, F. (2015). Encoding reality: prediction-assisted cortical learning algorithm in hierarchical temporal memory. https://arxiv.org/pdf/1509.08255.pdf
- Chaudhuri, S., Ellis, K., Polozov, O., Singh, R., Solar-Lezama, A., & Yue, Y. (2021). Neurosymbolic Programming. Foundations and Trends® in Programming Languages, 7(3), 158–243. https://doi.org/10.1561/2500000049
- Dickson, B. (2019, June 5). What happens when you combine neural networks and rule-based AI? . https://bdtechtalks.com/2019/06/05/mit-ibm-hybrid-ai/
- Dickson, B. (2022, March 14). Neuro-symbolic AI brings us closer to machines with common sense. https://bdtechtalks.com/2022/03/14/neuro-symbolic-ai-common-sense/
- Egri-Nagy, A., & Törmänen, A. (2022). Advancing Human Understanding with Deep Learning Go AI Engines. IS4SI 2021, 22. https://doi.org/10.3390/proceedings2022081022
- Feldman, P., Dant, A., & Massey, A. (2019). Integrating Artificial Intelligence into Weapon Systems.
- Fraternali, P., Milani, F., Nahime Torres, R., Zangrando, N., & di Milano Piazza Leonardo, P. (2022). Black-box error diagnosis in deep neural networks: a survey of tools.
- Garcez, A. S. d’Avila, Broda, K., & Gabbay, D. M. (2002). Neural-Symbolic Learning Systems: Foundations and Applications . Springer Science & Business Media. https://books.google.com.tr/books?hl=tr&lr=&id=6NZYVSOyD-UC&oi=fnd&pg=PA1&dq=Garcez+A.+S.+d.,+K.+B.+Broda,+D.+M.+Gabbay,+Neuralsymbolic+learning+systems:+foundations+and+applications,+2002,++Springer+Science+%26+Business+Media.&ots=sUdRBFNTa8&sig=EA0zcWKtyfTS-GNs_uZXIiG3Y_I&redir_esc=y#v=onepage&q&f=false
- Hao, K. (2019, June 6). Training a single AI model can emit as much carbon as five cars in their lifetimes. https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
- Hawkins, J. (2021). A Thousand Brains: A New Theory of Intelligence Hardcover.
- Hawkins, J., & Ahmad, S. (2016). Why Neurons Have Thousands of Synapses, a Theory of Sequence Memory in Neocortex. Frontiers in Neural Circuits, 10. https://doi.org/10.3389/fncir.2016.00023
- Hawkins, J., & Blakeslee, S. (2004). On Intelligence. Owl Books/Times Books.
- Hawkins, J., Lewis, M., Klukas, M., Purdy, S., & Ahmad, S. (2019). A Framework for Intelligence and Cortical Function Based on Grid Cells in the Neocortex. Frontiers in Neural Circuits, 12. https://doi.org/10.3389/fncir.2018.00121
- Hoover, A. K., Spryszynski, A., & Halper, M. (2019). Deep Learning in the IT Curriculum. Proceedings of the 20th Annual SIG Conference on Information Technology Education, 49–54. https://doi.org/10.1145/3349266.3351406
- Kahneman, D. (2011). Thinking, fast and slow. http://103.38.12.142:8081/jspui/bitstream/123456789/541/1/Thinking%2C%20Fast%20and%20Slow.pdf
- Kahneman, D. (2012). Of 2 Minds: How Fast and Slow Thinking Shape Perception and Choice [Excerpt] . Scientific American.
- Krestinskaya, O., Ibrayev, T., & James, A. P. (2018). Hierarchical Temporal Memory Features with Memristor Logic Circuits for Pattern Recognition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(6), 1143–1156. https://doi.org/10.1109/TCAD.2017.2748024
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, 25. http://code.google.com/p/cuda-convnet/
- Kurfess, F. J. (2003). Artificial Intelligence. In Encyclopedia of Physical Science and Technology (pp. 609–629). Elsevier. https://doi.org/10.1016/B0-12-227410-5/00027-2
- Lacoste, A., Luccioni, A., Schmidt, V., & Dandres, T. (2019). Quantifying the Carbon Emissions of Machine Learning. https://mlco2.github.
- Lannelongue, L., Grealey, J., Inouye, M., Lannelongue, L., & Inouye, M. (2021). Green Algorithms: Quantifying the Carbon Footprint of Computation. https://doi.org/10.1002/advs.202100707
- Lehky, S. R., Tanaka, K., & Sereno, A. B. (2021). Pseudosparse neural coding in the visual system of primates. Communications Biology, 4(1), 50. https://doi.org/10.1038/s42003-020-01572-2
- Lomonaco, V. (2019, October 24). A Machine Learning Guide to HTM (Hierarchical Temporal Memory). https://numenta.com/blog/2019/10/24/machine-learning-guide-to-htm
- Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., & Wu, J. (2019, April 26). The neuro-symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision. ICLR 2019. https://arxiv.org/pdf/1904.12584.pdf
- Marcus, G. (2022, March 10). Deep Learning Is Hitting a Wall. https://nautil.us/deep-learning-is-hitting-a-wall-14467/
- Marcus, G., & Davis, E. (2020, August 22). GPT-3, Bloviator: OpenAI’s language generator has no idea what it’s talking about. https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/
- Masson-Delmotte, V., Zhai, P., Chen, Y., Goldfarb, L., Gomis, M. I., Matthews, J. B. R., Berger, S., Huang, M., Yelekçi, O., Yu, R., Zhou, B., Lonnoy, E., Maycock, T. K., Waterfield, T., Leitzell,
- K., & Caud, N. (2021). Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Edited by. www.ipcc.ch
- Mortensen, J. (2022, March 16). Is Black Box AI Dangerous? . Tech Evaluate? https://www.techevaluate.com/is-black-box-ai-dangerous/
- Naser, M. Z., & Ross, B. (2022). An opinion piece on the dos and don’ts of artificial intelligence in civil engineering and charting a path from data-driven analysis to causal knowledge discovery. Civil Engineering and Environmental Systems, 1–11. https://doi.org/10.1080/10286608.2022.2049257
- Niu, D., Yang, L., Cai, T., Li, L., Wu, X., & Wang, Z. (2022). A New Hierarchical Temporal Memory Algorithm Based on Activation Intensity. Computational Intelligence and Neuroscience, 2022, 1–17. https://doi.org/10.1155/2022/6072316
- Numenta. (2017). Biological And Machine Intelligence (BAMI). https://numenta.com/assets/pdf/biological-and-machine-intelligence/BAMI-Complete.pdf
- Olshausen, B. A., & Field, D. J. (2004). Sparse coding of sensory inputs. Current Opinion in Neurobiology, 14(4), 481–487. https://doi.org/10.1016/J.CONB.2004.07.007
- Pati, S. (2022, March 7). The Future of Artificial Intelligence and Metaverse in 2030. https://zipe-education.com/the-future-of-artificial-intelligence-and-metaverse/
- Purdue University News. (2021, March 5). Think the brain is always efficient? Think again. https://www.purdue.edu/newsroom/releases/2021/Q1/think-the-brain-is-always-efficient-think-again..HTML
- Riganelli, O., Saltarel, P., Tundo, A., Mobilio, M., & Mariani, L. (2021). Cloud Failure Prediction with Hierarchical Temporal Memory: An Empirical Assessment. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), 785–790. https://doi.org/10.1109/ICMLA52953.2021.00130
- Schuller, B. W., Akman, A., Chang, Y., Coppock, H., Gebhard, A., Kathan, A., Rituerto-González, E., Triantafyllopoulos, A., & Pokorny, F. B. (2022). Climate Change & Computer Audition: A Call To Action And Overview On Audio Intelligence To Help Save The Planet A Preprint.
- Schwartz, R., Dodge, J., Smith, N. A., & Etzioni, O. (2020). Green AI. Communications of the ACM, 63(12), 54–63. https://doi.org/10.1145/3381831
- Shah, D., Ghate, P., Paranjape, M., & Kumar, A. (2021). Application of Hierarchical Temporal Memory Theory for Document Categorization.
- Soon, O. Y., & Hui, L. K. (2022, April 16). Making artificial intelligence work for sustainability. https://technologymagazine.com/ai-and-machine-learning/making-artificial-intelligence-work-for-sustainability
- Soviany, P., Ionescu, R. T., Rota, P., & Sebe, N. (2022). Curriculum Learning: A Survey.
- Strubell, E., Ganesh, A., & Mccallum, A. (2019). Energy and Policy Considerations for Deep Learning in NLP. https://bit.ly/2JTbGnI
- Struye, J., & Latré, S. (2020). Hierarchical temporal memory and recurrent neural networks for time series prediction: An empirical validation and reduction to multilayer perceptrons. Neurocomputing, 396, 291–301. https://doi.org/10.1016/j.neucom.2018.09.098
- Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2013). Intriguing properties of neural networks. Intriguing Properties of Neural Networks. https://arxiv.org/pdf/1312.6199.pdf?source=post_page
- Taylor, P. (2022, January 24). IBM sells off large parts of Watson Health business -. https://pharmaphorum.com/news/ibm-sells-off-large-parts-of-watson-health-business/
- Thoppilan, R., Freitas, D. de, Hall, J., Kulshreshtha, A., Cheng, H.-T., Jin, A., Bos, T., Baker, L., Du, Y., Li, Y., Lee, H., Zheng, S. H., Ghafouri, A., & Le, Q. (2022). LaMDA: Language Models for Dialog Applications. https://arxiv.org/pdf/2201.08239.pdf
- Trafton, A. (2022, February 17). Dendrites may help neurons perform complicated calculations. MIT News | Massachusetts Institute of Technology. https://news.mit.edu/2022/dendrites-help-neurons-perform-0217
- Urbina, F., Lentzos, F., Invernizzi, C., & Ekins, S. (2022). Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence, 4(3), 189–191. https://doi.org/10.1038/s42256-022-00465-9
- Vale, D., El-Sharif, A., & Ali, M. (2022). Explainable artificial intelligence (XAI) post-hoc explainability methods: risks and limitations in non-discrimination law. AI and Ethics, 1, 3. https://doi.org/10.1007/s43681-022-00142-y
- Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato, J., Huang, P.-S., Cheng, M., Glaese, M., Balle, B., Kasirzadeh, A., Kenton, Z., Brown, S., Hawkins, W., Stepleton, T., Biles, C., Birhane, A., Haas, J., Rimell, L., Hendricks, L. A., … Com>, <lweidinger@deepmind. (2021). Ethical and social risks of harm from Language Models. https://arxiv.org/pdf/2112.04359.pdf
- Yang, G., Hu, E. J., Babuschkin, I., Sidor, S., Liu, X., Farhi, D., Ryder, N., Pachocki, J., Chen, W., & Gao, J. (2022). Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer.
- Zednik, C. (2021). Solving the Black Box Problem: A Normative Framework for Explainable Artificial Intelligence. Philosophy & Technology, 34(2), 265–288. https://doi.org/10.1007/s13347-019-00382-7