Research Article
BibTex RIS Cite

Orta Kelkit Havzası bağcılığının iklim indeksleri ile değerlendirilmesi

Year 2024, , 23 - 32, 05.07.2024
https://doi.org/10.29278/azd.1397146

Abstract

Amaç: Bağ tesisinde çeşit seçimini etkileyen en önemli faktör bölgenin iklimidir. Bu çalışma, Orta Kelkit Havzası (Suşehri, Akıncılar ve Şebinkarahisar) bağcılığının durumunu iklim indeksleri ile incelemek ve bölgeye uygun çeşit önerisinde bulunabilmek amacıyla yapılmıştır.
Materyal ve Yöntem: Çalışma alanına ait 2021 ve 2022 yılları sıcaklık ve yağış verileri çalışmanın materyalini oluşturmuştur. İklim verileri Sivas Meteoroloji İşleri Genel Müdürlüğünden temin edilmiştir. İklim indeksi olarak Winkler indeksi (Wİ), Huglin indeksi (Hİ), Hidrotermik indeks (HDİ), büyüme mevsimi sıcaklığı indeksi (BMSİ), soğuk gece indeksi (SGİ), ve büyüme mevsimi yağış indeksi (BMYİ) kullanılmıştır. Sıcaklık verisi, Winkler indeksi, Huglin indeksi, soğuk gece indeksi ve büyüme mevsimi sıcaklığı indeksi hesaplamasında kullanılırken yağış verisi, büyüme mevsimi yağış indeksinin hesaplanmasında kullanılmıştır. Hidrotermik indeks hesaplamasında ise hem sıcaklık hemde yağış verisi kullanılmıştır.
Araştırma Bulguları: Bölgenin iklim indeksi verileri yıllara ve ilçelere göre değişiklik göstermiştir. İklim indekslerinin bölge ortalaması incelendiğinde Winkler indeksinin 1855.30 gün derece (gd), Huglin indeksinin 2959.99, Hidrotermik indeksin 2063.05, büyüme mevsimi sıcaklığının 16.67 ºC, soğuk gece indeksinin 3.92 ºC ve büyüme mevsimi yağış indeksinin ise 154.33 mm olduğu tespit edilmiştir.
Sonuç: Çalışma sonuçları bölgenin birçoğu üzüm çeşidi için uygun iklime sahip olduğunu göstermiştir. Bölgede yetişen üzümlerin ikincil metabolitlerin özellikle renk ve aroma açısından avantajlı olduğu tespit edilmiştir. Bölge külleme ve mildiyö gibi mantar hastalıklarına karşı risksiz bir bölgedir.

References

  • Aktürk, B., & Uzun, H. İ. (2019). Bazı sofralık üzüm çeşitlerinin Antalya’daki değişik yörelere uygunlukları ve etkili sıcaklık toplamı istekleri. Mediterranean Agricultural Sciences, 32(3), 267–273. https://doi.org/10.29136/mediterranean.520365
  • Aktürk, B., & Uzun, H. İ. (2020). Bağcılıkta etkili sıcaklık toplamı hesaplamasında kullanılan farklı yöntemlerin karşılaştırılması. Mediterranean Agricultural Sciences, 33(2), 159-165. https://doi.org/10.29136/mediterranean.538212
  • Amerine, M., & Winkler, A. (1944). Composition and quality of musts and wines of California grapes. Hilgardia, 15(6), 493-675.
  • An, N., Turp, M. T., Orgen, B., Bilgin, B., & Kurnaz, M. L. (2022). Analysis of the impact of climate change on grapevines in Turkey using heat unit accumulation–based indices. International Journal of Biometeorology, 66(11), 2325-2338. https://doi.org/10.1007/s00484-022-02360-9
  • Ateş, S. (2017). Karadeniz Bölgesinden Selekte Edilen Kokulu Üzüm (Vitis labrusca L.) Çeşitlerinin Ampelografik ve Antioksidan Özellikleri [Doktora Tezi]. Ondokuz Mayıs Üniversitesi, Samsun.
  • Bahar, E., Korkutal, İ., & Öner, H. (2018). Bağcılıkta terroir unsurları. Bahçe, 47(2), 57-70.
  • Biasi, R., Brunori, E., Ferrara, C., & Salvati, L. (2019). Assessing impacts of climate change on phenology and quality traits of Vitis vinifera L.: the contribution of local knowledge. Plants, 8(5), 121. https://doi.org/10.3390/plants8050121
  • Blanco‐Ward, D., Queijeiro, J. M. G., & Jones, G. V. (2007). Spatial climate variability and viticulture in the Mino River Valley of Spain. Vitis, 46, 63‐70.
  • Bois, B., Zito, S., & Calonnec, A. (2017). Climate vs grapevine pests and diseases worldwide: the first results of a global survey. OENO one, 51(2), 133-139. https://doi.org/10.20870/oeno-one.2017.51.2.1780
  • Branas, J., Bernon, G., & Levadoux, L. (1946) Elements de Viticulture Generale. Dehan, Montpellier.
  • Camps, J. O., & Ramos, M. C. (2012). Grape harvest and yield responses to inter-annual changes in temperature and precipitation in an area of north-east Spain with a Mediterranean climate. International Journal of Biometeorology, 56, 853-864. https://doi.org/10.1007/s00484-011-0489-3
  • Cancela, J. J., Trigo-Córdoba, E., Martínez, E. M., Rey, B. J., Bouzas-Cid, Y., Fandiño, M., & Mirás-Avalos, J. M. (2016). Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera (L.) of NW Spain. Agricultural Water Management, 170, 99-109. https://doi.org/10.1016/j.agwat.2016.01.004
  • Candar, S., Alço, T., Uysal, T., Ekiz, M., & Yayla, F. (2019). Karamenüş ve Yayla (Vitis vinifera L.) şaraplık üzüm çeşitlerinde biyoklimatik isteklerin ve olgunluk göstergelerinin belirlenmesi. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 5(2), 231-239. https://doi.org/10.24180/ijaws.597206
  • Cangi, R., & Altun, M. A. (2015). Bazı önemli sofralık üzüm çeşitlerinin Sakarya/Taraklı ekolojisine adaptasyonu. Tarım Bilimleri Araştırma Dergisi 8(2), 35–39. Carbonneau, A., Deloire, A., & Jaillard, B. (2007). La Vigne: Physiologie, Terroir, Culture. Dunod. Comte, V., Schneider, L., Calanca, P., & Rebetez, M. (2022). Effects of climate change on bioclimatic indices in vineyards along Lake Neuchatel, Switzerland. Theoretical and Applied Climatology, 1-14. https://doi.org/10.1007/s00704-021-03836-1 Çelik, H., Çetiner, H., Söylemezoğlu, G., Kunter, B., & Çakır, A. (2005). Bazı üzüm çeşitlerinin Kalecik (Ankara) koşullarındaki fenolojik özellikleri ile etkili sıcaklık toplamı (EST) isteklerinin belirlenmesi. Türkiye, 6, 390-397.
  • Çelik, S. (2007). Bağcılık(Ampeloloji). Cilt 1. Tekirdağ, 428s.
  • Çelik, S. (2011). Bağcılık (Ampeloloji). 1(3), Tekirdağ, 423s.
  • De Martonne, E. (1926). L'indice d'aridité. Bulletin de l'Association de géographes français, 3(9), 3-5. Fraga, H., Santos, J. A., Malheiro, A. C., Oliveira, A. A., Moutinho‐Pereira, J., & Jones, G. V. (2016). Climatic suitability of Portuguese grapevine varieties and climate change adaptation. International Journal of Climatology, 36(1), 1-12. https://doi.org/10.1002/joc.4325
  • Fregoni, C., & Pezzutto, S. (2000). Principes et premières approches de l’indice bioclimatique de qualité de Fregoni. Progr. Agric. Vitic, 18, 390-396.
  • Gladstones, J. (1992). Viticulture and Environment. Winetitles.
  • Happ, E. (1999). Indices for exploring the relationship between temperature and grape and wine flavour. Australian and New Zealand Wine Industry Journal, 14, 68-76.
  • Huglin, P. (1978). Nouveau mode d’évaluluation des possibilites héliothermiques d’un milieo viticole. In: Proceedings of the Symposium International sur l’ecologie de la Vigne. Ministére de l’Agriculture et de l’Industrie Alimentaire, Contanca, pp 89–98.
  • Jackson, D. I., & Cherry, N. J. (1988). Prediction of a district’s grape-ripening capacity using a latitude temperature index (LTI). American Journal of Enological Viticulture, 39(1), 19–28.
  • Jeřábek, T., Tvrzník, P., Málek, Z., Fišera, M., Fišerová, L., & Kráčmar, S. (2021). Relationship between climate change and wine quality in the Slovacko subregion as a support to managerial and marketing decision making. Journal of Microbiology, Biotechnology and Food Sciences, 10(6), e4682-e4682.
  • Jones, G. V., White, M. A., Cooper, O. R., & Storchmann, K. (2005). Climate change and global wine quality. Climatic Change, 73(3), 319-343.
  • Jones, G. V. (2006). Climate and terroir: impacts of climate variability and change on wine. Geoscience Canada Reprint Series, 9, 203-217.
  • Jones, G. V. (2007). Climate change: observations, projections, and general implications for viticulture and wine production. Economics Department-working paper, 7, 14.
  • Jones, G., Moriondo, M., Bois, B., Hall, A., & Duff, A. (2009). Analysis of the spatial climate structure in viticulture regions worlwide. Bulletin de l'OIV, 82(944), 507-517.
  • Kalkan, N. N., Bozkurt, A., Altun, O. T., Kaya, Ö., Geçim, T., Karadoğan, B., Kadıoğlu, Z., & Albayrak, S. (2023). Bazı Üzüm Çeşitlerinin Erzincan Koşullarında Fenolojik Gelişme Evreleri İle Etkili Sıcaklık Toplamı İsteklerinin Belirlenmesi. Bahçe, 52(Özel Sayı 1), 394-400.
  • Karadağ, H. (2016). Kelkit Havzası Organik Tarım Potansiyelinin Belirlenmesi Ve Coğrafi Bilgi Sistemleri Kullanarak Haritalanması, [Doktora Tezi]. Gaziosmanpaşa Üniversitesi, Tokat.
  • Karoglan, M., Telisman Prtenjak, M., Simon, S., Osrecak, M., Anic, M., Karoglan Kontic, J., Andabaka, Z., Tomaz, I., Grisogono, B., Belusic, A., Marki, A., Prsa, Z., Omazic, B., Jelic, D., Vecenaj, Z., Vucetic, V., Pocakal, D., Petric, I. V., Leder, N., & Prsa, I. (2018). Classification of Croatian wine growing regions based on bioclimatic indices. E3S Web Conf, 50, 01032. https://doi.org/10.1051/e3sconf/20185001032
  • Keller, M. (2010). Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Australian Journal of Grape and Wine Research, 16, 56-69. https://doi.org/10.1111/j.1755-0238.2009.00077.x
  • Kılıç, O. M. (2015). Kelkit Havzası Ekolojik Risk Değerlendirmesi. [Doktora Tezi], Gaziosmanpaşa Üniversitesi, Tokat.
  • Kliewer, W. M., & Torres, R. E. (1972). Effect of controlled day and night temperatures on grape coloration. American Journal of Ecology and Viticulture, 23(2), 71-77. https://doi.org/10.5344/ajev.1972.23.2.71
  • Kliewer, W. M. (1973). Berry composition of Vitis vinifera cultivars as influenced by photo-and nycto-temperatures during maturation. Journal of the American Society for Horticultural Science, 98(2), 153-159. https://doi.org/10.21273/JASHS.98.2.153
  • Koufos, G. C., Mavromatis, T., Koundouras, S., & Jones, G. V. (2018). Response of viticulture‐related climatic indices and zoning to historical and future climate conditions in Greece. International Journal of Climatology, 38(4), 2097-2111. https://doi.org/10.1002/joc.5320
  • Koufos, G. C., Mavromatis, T., Koundouras, S., Fyllas, N. M., Theocharis, S., & Jones, G. V. (2022). Greek Wine Quality Assessment and Relationships with Climate: Trends, Future Projections and Uncertainties. Water, 14(4), 573. https://doi.org/10.3390/w14040573
  • Kok, D. (2020). Responses of grape quality characteristics of some table grape varieties (V. vinifera L.) grown in northwestern Turkey to heat summation index and latitude-temperature index. Erwerbs-Obstbau, 62(Suppl 1), 17-23. https://doi.org/10.1007/s10341-020-00487-w
  • Köse, B. (2014). Phenology and ripening of Vitis vinifera L. and Vitis labrusca L. varieties in the maritime climate of Samsun in Turkey's Black Sea Region. South African Journal of Enology and Viticulture, 35(1), 90-102.
  • Köse, B. (2021). Evaluating of wine grapes phenology by using different climatic indices, grown in Black Sea region, Turkey. Erwerbs-Obstbau, 63(Suppl 1), 77-88. https://doi.org/10.1007/s10341-021-00584-4
  • Kriedemann, P. E. (1968). Photosynthesis in vine leaves as a function of light intensity, temperature, and leaf age. Vitis, 7, 213-220.
  • Küsmüş, S. (2016). Malatya ilinde yetiştirilen üzüm çeşitlerinde etkili sıcaklık toplamı ve optimum hasat zamanlarının belirlenmesi. [Yüksek Lisans Tezi], Yüzüncü Yıl Üniversitesi, Van.
  • Lopes, C. M., Egipto, R., Pedroso, V., Pinto, P. A., Braga, R., & Neto, M. (2017). Can berry composition be explained by climatic indices? Comparing classical with new indices in the Portuguese Dão region. Acta Hortic, 1157, 59–64. https://doi.org/10.17660/ActaHortic.2017.1157.10
  • Malheiro, A. C., Santos, J. A., Fraga, H., Pinto, J. G. (2012). Future scenarios for viticultural climatic zoning in Iberia. Acta Hortic, 931, 55–61. https://doi.org/10.17660/ActaHortic.2012.931.5
  • Piña-Rey, A., González-Fernández, E., Fernández-González, M., Lorenzo, M. N., & Rodríguez-Rajo, F. J. (2020). Climate change impacts assessment on wine-growing bioclimatic transition areas. Agriculture, 10(12), 605. https://doi.org/10.3390/agriculture10120605
  • Santos, J. A., Grätsch, S. D., Karremann, M. K., Jones, G. V., & Pinto, J. G. (2013). Ensemble projections for wine production in the Douro Valley of Portugal. Climatic Change, 117, 211-225. https://doi.org/10.1007/s10584-012-0538-x
  • Schwartz, M. D. (Ed.). (2003). Phenology: an İntegrative Environmental Science (Vol. 132). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/978-94-007-6925-0
  • Söğüt, A. B., & Özdemir, G. (2015). Bazı şaraplık üzüm çeşitlerinin Diyarbakır ekolojisindeki fenolojik özellikleri ile etkili sıcaklık toplamı isteklerinin belirlenmesi. Selçuk Tarım ve Gıda Bilimleri Dergisi-A, 27(2015), 1309-0550.
  • Sümbül, A., & Yıldız, E. (2022). Orta Kelkit Havzasının Meyvecilik Potansiyeli Açısından Analizi. 3rd International UNIDOKAP Black Sea Symposium “Sustainable Agriculture and Environment.
  • Tonietto, J., & Carbonneau, A. (2004). A multicriteria climatic classification system for grape-growing regions worldwide. Agricultural and forest meteorology, 124(1-2), 81-97. https://doi.org/10.1016/j.agrformet.2003.06.001
  • Tomana, T., Utsunomiya, N., & Dataoka, I. (1979). The effect of environmental temperatures on fruit on ripening on the tree. II. The effect of temperatures around whole vines and clusters on the coloration of ‘Kyoho’grapes. Journal of the Japanese Society for Horticultural Science, 48(3), 261–266.
  • Webb, L. B., Whetton, P. H., Bhend, J., Darbyshire, R., Briggs, P. R., & Barlow, E. W. R. (2012). Earlier wine-grape ripening driven by climatic warming and drying and management practices. Nature Climate Change, 2(4), 259-264. https://doi.org/10.1038/nclimate1417
  • Yılmaz, D.S. (2015). Kelkit havzasında küresel ısınma ile ilgili bazı parametrelerin coğrafi bilgi sistemleri ve uzaktan algılama ile tahmini. [Yüksek Lisans Tezi], Gaziosmanpaşa Üniversitesi, Tokat.

Evaluation of Middle Kelkit Basin Viticulture with Climate Indices

Year 2024, , 23 - 32, 05.07.2024
https://doi.org/10.29278/azd.1397146

Abstract

Objective: The climate of the region is the decisive factor influencing the selection of grape varieties in the establishment of vineyards. This study was carried out to examine the status of viticulture in the Middle Kelkit Basin (Suşehri, Akıncılar and Şebinkarahisar) using climate indices and to suggest varieties suitable for the region.
Materials and Methods: The temperature and precipitation data of the study area in 2021 and 2022 constituted the material of the study. Climate data was obtained from Sivas Meteorological Directorate. Winkler index (WI), Huglin index (HI), Hydrothermal index (HDI), growing season temperature index (GSTI), cold night index (CNI), and growing season precipitation index (GSPI) were used as climate index. While temperature data was used to calculate the Winkler index, Huglin index, cold night index and growing season temperature index, precipitation data was used to calculate the growing season precipitation index. Both temperature and precipitation data were used to calculate the hydrothermal index.
Results: The climate index data of the region varied according to years and districts. Examining the regional average of climate indices, it was determined that the Winkler index was 1855.30 day degrees (dd), the Huglin index was 2959.99, the hydrothermal index was 2063.05, the growing season temperature was 16.67 ºC, the cold night index was 3.92 ºC and the growing season precipitation index was 154.33 mm.
Conclusion: The results of the study showed that the region has a suitable climate for many grape varieties. It has been determined that grapes grown in the region are advantageous in terms of secondary metabolites, especially color and aroma. The region is risk-free against fungal diseases such as powdery mildew and mildew.

References

  • Aktürk, B., & Uzun, H. İ. (2019). Bazı sofralık üzüm çeşitlerinin Antalya’daki değişik yörelere uygunlukları ve etkili sıcaklık toplamı istekleri. Mediterranean Agricultural Sciences, 32(3), 267–273. https://doi.org/10.29136/mediterranean.520365
  • Aktürk, B., & Uzun, H. İ. (2020). Bağcılıkta etkili sıcaklık toplamı hesaplamasında kullanılan farklı yöntemlerin karşılaştırılması. Mediterranean Agricultural Sciences, 33(2), 159-165. https://doi.org/10.29136/mediterranean.538212
  • Amerine, M., & Winkler, A. (1944). Composition and quality of musts and wines of California grapes. Hilgardia, 15(6), 493-675.
  • An, N., Turp, M. T., Orgen, B., Bilgin, B., & Kurnaz, M. L. (2022). Analysis of the impact of climate change on grapevines in Turkey using heat unit accumulation–based indices. International Journal of Biometeorology, 66(11), 2325-2338. https://doi.org/10.1007/s00484-022-02360-9
  • Ateş, S. (2017). Karadeniz Bölgesinden Selekte Edilen Kokulu Üzüm (Vitis labrusca L.) Çeşitlerinin Ampelografik ve Antioksidan Özellikleri [Doktora Tezi]. Ondokuz Mayıs Üniversitesi, Samsun.
  • Bahar, E., Korkutal, İ., & Öner, H. (2018). Bağcılıkta terroir unsurları. Bahçe, 47(2), 57-70.
  • Biasi, R., Brunori, E., Ferrara, C., & Salvati, L. (2019). Assessing impacts of climate change on phenology and quality traits of Vitis vinifera L.: the contribution of local knowledge. Plants, 8(5), 121. https://doi.org/10.3390/plants8050121
  • Blanco‐Ward, D., Queijeiro, J. M. G., & Jones, G. V. (2007). Spatial climate variability and viticulture in the Mino River Valley of Spain. Vitis, 46, 63‐70.
  • Bois, B., Zito, S., & Calonnec, A. (2017). Climate vs grapevine pests and diseases worldwide: the first results of a global survey. OENO one, 51(2), 133-139. https://doi.org/10.20870/oeno-one.2017.51.2.1780
  • Branas, J., Bernon, G., & Levadoux, L. (1946) Elements de Viticulture Generale. Dehan, Montpellier.
  • Camps, J. O., & Ramos, M. C. (2012). Grape harvest and yield responses to inter-annual changes in temperature and precipitation in an area of north-east Spain with a Mediterranean climate. International Journal of Biometeorology, 56, 853-864. https://doi.org/10.1007/s00484-011-0489-3
  • Cancela, J. J., Trigo-Córdoba, E., Martínez, E. M., Rey, B. J., Bouzas-Cid, Y., Fandiño, M., & Mirás-Avalos, J. M. (2016). Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera (L.) of NW Spain. Agricultural Water Management, 170, 99-109. https://doi.org/10.1016/j.agwat.2016.01.004
  • Candar, S., Alço, T., Uysal, T., Ekiz, M., & Yayla, F. (2019). Karamenüş ve Yayla (Vitis vinifera L.) şaraplık üzüm çeşitlerinde biyoklimatik isteklerin ve olgunluk göstergelerinin belirlenmesi. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 5(2), 231-239. https://doi.org/10.24180/ijaws.597206
  • Cangi, R., & Altun, M. A. (2015). Bazı önemli sofralık üzüm çeşitlerinin Sakarya/Taraklı ekolojisine adaptasyonu. Tarım Bilimleri Araştırma Dergisi 8(2), 35–39. Carbonneau, A., Deloire, A., & Jaillard, B. (2007). La Vigne: Physiologie, Terroir, Culture. Dunod. Comte, V., Schneider, L., Calanca, P., & Rebetez, M. (2022). Effects of climate change on bioclimatic indices in vineyards along Lake Neuchatel, Switzerland. Theoretical and Applied Climatology, 1-14. https://doi.org/10.1007/s00704-021-03836-1 Çelik, H., Çetiner, H., Söylemezoğlu, G., Kunter, B., & Çakır, A. (2005). Bazı üzüm çeşitlerinin Kalecik (Ankara) koşullarındaki fenolojik özellikleri ile etkili sıcaklık toplamı (EST) isteklerinin belirlenmesi. Türkiye, 6, 390-397.
  • Çelik, S. (2007). Bağcılık(Ampeloloji). Cilt 1. Tekirdağ, 428s.
  • Çelik, S. (2011). Bağcılık (Ampeloloji). 1(3), Tekirdağ, 423s.
  • De Martonne, E. (1926). L'indice d'aridité. Bulletin de l'Association de géographes français, 3(9), 3-5. Fraga, H., Santos, J. A., Malheiro, A. C., Oliveira, A. A., Moutinho‐Pereira, J., & Jones, G. V. (2016). Climatic suitability of Portuguese grapevine varieties and climate change adaptation. International Journal of Climatology, 36(1), 1-12. https://doi.org/10.1002/joc.4325
  • Fregoni, C., & Pezzutto, S. (2000). Principes et premières approches de l’indice bioclimatique de qualité de Fregoni. Progr. Agric. Vitic, 18, 390-396.
  • Gladstones, J. (1992). Viticulture and Environment. Winetitles.
  • Happ, E. (1999). Indices for exploring the relationship between temperature and grape and wine flavour. Australian and New Zealand Wine Industry Journal, 14, 68-76.
  • Huglin, P. (1978). Nouveau mode d’évaluluation des possibilites héliothermiques d’un milieo viticole. In: Proceedings of the Symposium International sur l’ecologie de la Vigne. Ministére de l’Agriculture et de l’Industrie Alimentaire, Contanca, pp 89–98.
  • Jackson, D. I., & Cherry, N. J. (1988). Prediction of a district’s grape-ripening capacity using a latitude temperature index (LTI). American Journal of Enological Viticulture, 39(1), 19–28.
  • Jeřábek, T., Tvrzník, P., Málek, Z., Fišera, M., Fišerová, L., & Kráčmar, S. (2021). Relationship between climate change and wine quality in the Slovacko subregion as a support to managerial and marketing decision making. Journal of Microbiology, Biotechnology and Food Sciences, 10(6), e4682-e4682.
  • Jones, G. V., White, M. A., Cooper, O. R., & Storchmann, K. (2005). Climate change and global wine quality. Climatic Change, 73(3), 319-343.
  • Jones, G. V. (2006). Climate and terroir: impacts of climate variability and change on wine. Geoscience Canada Reprint Series, 9, 203-217.
  • Jones, G. V. (2007). Climate change: observations, projections, and general implications for viticulture and wine production. Economics Department-working paper, 7, 14.
  • Jones, G., Moriondo, M., Bois, B., Hall, A., & Duff, A. (2009). Analysis of the spatial climate structure in viticulture regions worlwide. Bulletin de l'OIV, 82(944), 507-517.
  • Kalkan, N. N., Bozkurt, A., Altun, O. T., Kaya, Ö., Geçim, T., Karadoğan, B., Kadıoğlu, Z., & Albayrak, S. (2023). Bazı Üzüm Çeşitlerinin Erzincan Koşullarında Fenolojik Gelişme Evreleri İle Etkili Sıcaklık Toplamı İsteklerinin Belirlenmesi. Bahçe, 52(Özel Sayı 1), 394-400.
  • Karadağ, H. (2016). Kelkit Havzası Organik Tarım Potansiyelinin Belirlenmesi Ve Coğrafi Bilgi Sistemleri Kullanarak Haritalanması, [Doktora Tezi]. Gaziosmanpaşa Üniversitesi, Tokat.
  • Karoglan, M., Telisman Prtenjak, M., Simon, S., Osrecak, M., Anic, M., Karoglan Kontic, J., Andabaka, Z., Tomaz, I., Grisogono, B., Belusic, A., Marki, A., Prsa, Z., Omazic, B., Jelic, D., Vecenaj, Z., Vucetic, V., Pocakal, D., Petric, I. V., Leder, N., & Prsa, I. (2018). Classification of Croatian wine growing regions based on bioclimatic indices. E3S Web Conf, 50, 01032. https://doi.org/10.1051/e3sconf/20185001032
  • Keller, M. (2010). Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Australian Journal of Grape and Wine Research, 16, 56-69. https://doi.org/10.1111/j.1755-0238.2009.00077.x
  • Kılıç, O. M. (2015). Kelkit Havzası Ekolojik Risk Değerlendirmesi. [Doktora Tezi], Gaziosmanpaşa Üniversitesi, Tokat.
  • Kliewer, W. M., & Torres, R. E. (1972). Effect of controlled day and night temperatures on grape coloration. American Journal of Ecology and Viticulture, 23(2), 71-77. https://doi.org/10.5344/ajev.1972.23.2.71
  • Kliewer, W. M. (1973). Berry composition of Vitis vinifera cultivars as influenced by photo-and nycto-temperatures during maturation. Journal of the American Society for Horticultural Science, 98(2), 153-159. https://doi.org/10.21273/JASHS.98.2.153
  • Koufos, G. C., Mavromatis, T., Koundouras, S., & Jones, G. V. (2018). Response of viticulture‐related climatic indices and zoning to historical and future climate conditions in Greece. International Journal of Climatology, 38(4), 2097-2111. https://doi.org/10.1002/joc.5320
  • Koufos, G. C., Mavromatis, T., Koundouras, S., Fyllas, N. M., Theocharis, S., & Jones, G. V. (2022). Greek Wine Quality Assessment and Relationships with Climate: Trends, Future Projections and Uncertainties. Water, 14(4), 573. https://doi.org/10.3390/w14040573
  • Kok, D. (2020). Responses of grape quality characteristics of some table grape varieties (V. vinifera L.) grown in northwestern Turkey to heat summation index and latitude-temperature index. Erwerbs-Obstbau, 62(Suppl 1), 17-23. https://doi.org/10.1007/s10341-020-00487-w
  • Köse, B. (2014). Phenology and ripening of Vitis vinifera L. and Vitis labrusca L. varieties in the maritime climate of Samsun in Turkey's Black Sea Region. South African Journal of Enology and Viticulture, 35(1), 90-102.
  • Köse, B. (2021). Evaluating of wine grapes phenology by using different climatic indices, grown in Black Sea region, Turkey. Erwerbs-Obstbau, 63(Suppl 1), 77-88. https://doi.org/10.1007/s10341-021-00584-4
  • Kriedemann, P. E. (1968). Photosynthesis in vine leaves as a function of light intensity, temperature, and leaf age. Vitis, 7, 213-220.
  • Küsmüş, S. (2016). Malatya ilinde yetiştirilen üzüm çeşitlerinde etkili sıcaklık toplamı ve optimum hasat zamanlarının belirlenmesi. [Yüksek Lisans Tezi], Yüzüncü Yıl Üniversitesi, Van.
  • Lopes, C. M., Egipto, R., Pedroso, V., Pinto, P. A., Braga, R., & Neto, M. (2017). Can berry composition be explained by climatic indices? Comparing classical with new indices in the Portuguese Dão region. Acta Hortic, 1157, 59–64. https://doi.org/10.17660/ActaHortic.2017.1157.10
  • Malheiro, A. C., Santos, J. A., Fraga, H., Pinto, J. G. (2012). Future scenarios for viticultural climatic zoning in Iberia. Acta Hortic, 931, 55–61. https://doi.org/10.17660/ActaHortic.2012.931.5
  • Piña-Rey, A., González-Fernández, E., Fernández-González, M., Lorenzo, M. N., & Rodríguez-Rajo, F. J. (2020). Climate change impacts assessment on wine-growing bioclimatic transition areas. Agriculture, 10(12), 605. https://doi.org/10.3390/agriculture10120605
  • Santos, J. A., Grätsch, S. D., Karremann, M. K., Jones, G. V., & Pinto, J. G. (2013). Ensemble projections for wine production in the Douro Valley of Portugal. Climatic Change, 117, 211-225. https://doi.org/10.1007/s10584-012-0538-x
  • Schwartz, M. D. (Ed.). (2003). Phenology: an İntegrative Environmental Science (Vol. 132). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/978-94-007-6925-0
  • Söğüt, A. B., & Özdemir, G. (2015). Bazı şaraplık üzüm çeşitlerinin Diyarbakır ekolojisindeki fenolojik özellikleri ile etkili sıcaklık toplamı isteklerinin belirlenmesi. Selçuk Tarım ve Gıda Bilimleri Dergisi-A, 27(2015), 1309-0550.
  • Sümbül, A., & Yıldız, E. (2022). Orta Kelkit Havzasının Meyvecilik Potansiyeli Açısından Analizi. 3rd International UNIDOKAP Black Sea Symposium “Sustainable Agriculture and Environment.
  • Tonietto, J., & Carbonneau, A. (2004). A multicriteria climatic classification system for grape-growing regions worldwide. Agricultural and forest meteorology, 124(1-2), 81-97. https://doi.org/10.1016/j.agrformet.2003.06.001
  • Tomana, T., Utsunomiya, N., & Dataoka, I. (1979). The effect of environmental temperatures on fruit on ripening on the tree. II. The effect of temperatures around whole vines and clusters on the coloration of ‘Kyoho’grapes. Journal of the Japanese Society for Horticultural Science, 48(3), 261–266.
  • Webb, L. B., Whetton, P. H., Bhend, J., Darbyshire, R., Briggs, P. R., & Barlow, E. W. R. (2012). Earlier wine-grape ripening driven by climatic warming and drying and management practices. Nature Climate Change, 2(4), 259-264. https://doi.org/10.1038/nclimate1417
  • Yılmaz, D.S. (2015). Kelkit havzasında küresel ısınma ile ilgili bazı parametrelerin coğrafi bilgi sistemleri ve uzaktan algılama ile tahmini. [Yüksek Lisans Tezi], Gaziosmanpaşa Üniversitesi, Tokat.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Oenology and Viticulture
Journal Section Makaleler
Authors

Ahmet Sümbül 0000-0001-9510-0992

Publication Date July 5, 2024
Submission Date November 28, 2023
Acceptance Date January 11, 2024
Published in Issue Year 2024

Cite

APA Sümbül, A. (2024). Orta Kelkit Havzası bağcılığının iklim indeksleri ile değerlendirilmesi. Akademik Ziraat Dergisi, 13(1), 23-32. https://doi.org/10.29278/azd.1397146