Research Article
BibTex RIS Cite

Performance of Liquid Nutrient Medium with Support System in Micropropagation of Pixy Plum Clone Rootstock in Shoot Proliferation Stage

Year 2025, Volume: 14 Issue: 1, 13 - 22, 30.06.2025
https://doi.org/10.29278/azd.1645026

Abstract

Objective: The aim of this study was to investigate the effects of liquid nutrient medium with support system, together with different BAP (6-benzylaminopurine) doses, on shoot survival, multiplication and quality during the shoot proliferation stage in micropropagation of Pixy plum clone rootstock (P. insititia L.).
Material and Methods: Micro shoots obtained from subcultures were used as plant material. Modified Murashige and Skoog (MS) nutrient medium containing 0.01 mg L-1 IBA (indole-3-butyric acid) and 0.1 mg L-1 GA3 (gibberellic acid), 0.5 mg L-1 or 1.0 mg L-1 doses of BAP and 30 g L-1 sucrose were added. Semi-solid nutrient medium was solidified with 0.65 g L-1 agar. Filter paper was used as a support system in liquid nutrient medium. Cultures were kept at 25±1 °C and 16 h light (35 µmol m-2 s-1) conditions. At the end of the fourth week, shoot survival percentage and shoot proliferation percentage, shoot number, length, thickness level (1-3) and leaf number in surviving cultures were determined.
Results: As an average of BAP doses, shoot survival percentage was found to be significantly higher in liquid medium (%100.0) than in semi-solid medium (%66.7), whereas the proliferation percentage in surviving cultures was statistically significantly higher in semi-solid medium (%91.7) than in liquid medium (%73.6). As an average of all treatments, shoot number and leaf number were determined as 2.8±0.3 and 8.0±0.6 per explant, respectively, and shoot thickness level was 2.0±0.1. The average shoot length was found to be higher in semi-solid medium (10.1±3.1 mm) than in liquid medium (8.0±2.5 mm).
Conclusion: The survival percentage of explants in liquid medium was found to be 33.3% higher than in semi-solid medium. In this case, the shoot proliferation percentage calculated according to the survival percentage was 12.4% higher in liquid medium (73.6%) than in semi-solid medium (61.2%). Shoots were generally produced in similar numbers and quality in both media types. As an average of media types, 0.5 mg/L dose of BAP (88.5%) increased the shoot proliferation percentage compared to 1.0 mg/L (72.9%).

References

  • Arıcı, S. E. (2008). Bazı sert çekirdekli meyve anaçlarının doku kültürü ile çoğaltılması. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi 3(1), 19-23.
  • Beakbane, A. B. (1977). Plum rootstock-Pixy variety. U.S. Patent No. Plant 4,061.
  • Cantabella, D., Mendoza, C.R., Teixidó, N., Vilaró, F., Torres, R., & Dolcet-Sanjuan, R. (2022). GreenTray® TIS bioreactor as an effective in vitro culture system for the micropropagation of Prunus spp. rootstocks and analysis of the plant-PGPMs interactions, Scientia Horticulturae, 291, 110622. https://doi.org/10.1016/j.scienta.2021.110622
  • Dodds, J. H. & Roberts, L. W. (1993). Experiments in plant tissue culture. Cambridge University Press. New York, 231 p.
  • Dolcet-Sanjuan, R., Casanovas, M., Franquesa, S., Alsina, E., Carrasco-Cuello, F., Torres, E., Rufat, J., Solsona, C., & Teixido, N. (2024). GreenTray®, a TIS bioreactor for plant micropropagation and abiotic or biotic stress bioassays. Applied Sciences, 14(10), 4051. https://doi.org/10.3390/app14104051
  • Dolgun, O., Tekintas, F. E., & Ertan, E. (2008). A histological investigation on graft formation of some nectarine cultivars grafted on Pixy rootstock. World Journal of Agricultural Sciences 4(5), 565-568.
  • Donadio, L. C., Lederman, I. E., Roberto, S. R., & Stucchi, E. S. (2019). Dwarfing-canopy and rootstock cultivars for fruit trees. Revista Brasileira De Fruticultura, 41(3), 1-12. https://doi.org/10.1590/0100-29452019997
  • Gago, D., Sánchez, C., Aldrey, A., Christie, C. B., Bernal, M. Á., & Vidal, N. (2022). Micropropagation of plum (Prunus domestica L.) in bioreactors using photomixotrophic and photoautotrophic conditions. Horticulturae, 8(4), 286. https://doi.org/10.3390/horticulturae8040286
  • Geyik, D., & Canlı, F. A. (2015). Micropropagation of ‘Pixy’ (Prunus institia L.) rootstock. Plant Molecular Biology & Biotechnology. 5, 1-6.
  • Dutta Gupta, S., & Prasad, V. S. S. (2006). Matrix-supported liquid culture systems for efficient micropropagation of floricultural plants. J. A. Teixeira da Silva (Ed.), Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues içinde (487-495. ss.). London: Global Science Books, Ltd.
  • Hartmann, H. T., Kester, D. E., Davies, Jr. F. T., & Geneve, R. L. (2011). Plant Propagation: Principles and Practices (8th Edition). Prentice-Hall, Boston, 915 p.
  • Jones, O. P., & Hopgood, M. E. (1979). The successful propagation in vitro of two rootstocks of Prunus: the plum rootstock Pixy (P. insititia) and the cherry rootstock F12/1 (P. avium). Journal of Horticultural Science, 54(1), 63-66. https://doi.org/10.1080/00221589.1979.11514849
  • Kaushalya, D. B. R., Eeswara, J. P., & Jayasinghe, L. (2023). Development of liquid culture system for rapid multiplication of Gyrinops walla. Tropical Agricultural Research, 34(1), 43-51. http://doi.org/10.4038/tar.v34i1.8603
  • Lal, M, Jamwal, M, Sood Y, Bakshi, P, Sharma, N, Sharma, S, & Kumar, S. (2023). Micropropagation of fruit crops: A review. Plant Science Today, 10(1), 108-117. https://doi.org/10.14719/ pst.1891
  • Lang, G. A. (2024). Guidelines for the choice of stone fruit rootstocks. Italus Hortus, 31, 18-26. https://doi.org/10.26353/j.itahort/2024.1.1826
  • Mehta, M., Ram, R., & Bhattacharya, A. (2014). A simple and cost effective liguid culture system fort he micropropagation of two comeercially important apple rootstocks. Indian Journal of Exprimental Biology, 52, 748-754. https://doi.org/10.4314/AJB.V6I13.57591
  • Mehrotra, S., Goel, M. K., Kukreja, A. K., & Mishra, B. N. (2007). Efficiency of liquid culture systems over conventional micropropagation: A progress towards commercialization. African Journal of Biotechnology, 6, 1484-1492.
  • Murthy, H. N., Joseph, K. S., Paek, K. Y., & Park, S. Y. (2023). Bioreactor systems for micropropagation of plants: present scenario and future prospects. Frontiers in Plant Science, 14, 1159588. https://doi.org/10.3389/fpls.2023.1159588
  • Nirmal, D., Teraiya, S., & Joshi, P. (2023). Liquid culture system: an efficient approach for sustainable micropropagation. Current Agriculture Research Journal, 11(1), 28-42. https://doi.org/10.12944/CARJ.11.1.03.
  • Nowakowska, K., Pińkowska, A., Siedlecka, E., & Pacholczak, A. (2022). The effect of cytokinins on shoot proliferation, biochemical changes and genetic stability of rhododendron ‘Kazimierz Odnowiciel’ in the in vitro cultures. Plant Cell, Tissue and Organ Culture (PCTOC), 149, 675-684. https://doi.org/10.1007/s11240-021-02206-z
  • Pakyürek, M., & Hepaksoy, S. (2020). A research on micropropagation of Pixy rootstock. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 7(8), 146-159. https://doi.org/10.38065/euroasiaorg.31
  • Preil W. (2005). General introduction: a personal reflection on the use of liquid media for in vitro culture. A. K. Hvoslef-Eide, & W. Preil (Ed.), Liquid Culture Systems for in vitro Plant Propagation içinde (1-18. ss.). Dordrecht, The Netherlands: Springer. https://doi.org/10.1007/1-4020-3200-5_1
  • Shabani, Z., Moghadam, E. G., Abedi, B., & Tehranifar, A. (2015). The effect of plant growth regulators and their concentration in vitro on mass propagation of Myrobalan 29C rootstock. Journal of Horticulture and Forestry 7(3), 73-83.
  • Thakur, M., Sharma, V., & Luharch, R. (2021). Propagation of plum (Prunus salicina L.) cultivar Frontier in vitro through control of shoot tip necrosis (STN) and validation of genetic integrityusing ISSR markers. Plant Physiology Reports 26, 238-246. https://doi.org/10.1007/s40502-021-00580-6
  • Uğur, R., Paydaş, S., & Saridas, M. A. (2023). Rootstock breeding and rootstock-scion interaction in Prunus species. Journal of Erciyes Agriculture and Animal Science, 6(2), 7-10.
  • Van Staden, J., Zazimalova E., & George, E. F. (2008). Plant growth regulators II: cytokinins, their analogues and antagonists. E. F. George, M. A. Hall, & G. J. De Clark (Ed.), Plant Propagation by Tissue Culture 3rd Edition Volume 1. The Background içinde (205-226 ss.). Dordrecht, The Netherlands: Springer.
  • Westwood, A. D. (1980). Pixy, a new dwarfing rootstock for plums, Prunus domestica L. Journal of Horticultural Science, 55(4), 425-431. https://doi.org/10.1080/00221589.1980.11514954
  • Wolella, E. K. (2017). Surface sterilization and in vitro propagation of Prunus domestica L. cv. Stanley using axillary buds as explants. Journal of Biotech Research 8, 18-26.

Pixy Erik Klon Anacının Mikro Çoğaltımında Destek Sistemli Sıvı Besin Ortamının Sürgün Çoğaltma Aşamasında Performansı

Year 2025, Volume: 14 Issue: 1, 13 - 22, 30.06.2025
https://doi.org/10.29278/azd.1645026

Abstract

Amaç: Bu çalışmanın amacı, Pixy erik klon anacının (P. insititia L.) mikro çoğaltımında sürgün çoğaltma aşamasında destek sistemli sıvı besin ortamının, farklı BAP (6-benzil amino pürin) dozları ile birlikte sürgün canlılığı, çoğaltımı ve kalitesi üzerine etkilerinin araştırılmasıdır.
Materyal ve Yöntem: Bitkisel materyal olarak alt kültürlerden sağlanan mikro sürgünler kullanılmıştır. Modifiye edilmiş Murashige ve Skoog (MS) besin ortamına 0.01 mg L-1 IBA (indol-3-bütirik asit) ve 0.1 mg L-1 GA3 (gibberellik asit) ile birlikte BAP’ın 0.5 mg L-1 veya 1.0 mg L-1 dozları, 30 g L-1 sakaroz ilave edilmiştir. Yarı katı besin ortamı 0.65 g L-1 agar ile katılaştırılmıştır. Sıvı besin ortamında destek sistemi olarak filtre kâğıdı kullanılmıştır. Kültürler 251 oC sıcaklık ve 16 saat aydınlık (35 µmol m-2 s-1) koşullarda tutulmuştur. Dördüncü haftanın sonunda sürgünlerde canlılık oranı, canlı kalan kültürlerde sürgün çoğalma oranı, sürgün sayısı, uzunluğu, kalınlık düzeyi (1-3) ve yaprak sayısı belirlenmiştir.
Araştırma Bulguları: Sürgünlerde canlılık oranı BAP dozlarının ortalaması olarak sıvı ortamda (%100.0), yarı katı ortama (%66.7) göre ve canlı kalan kültürlerde çoğalma oranı yarı katı ortamda (%91.7), sıvı ortama (%73.6) göre istatistiksel anlamda önemli düzeyde daha yüksek bulunmuştur. Tüm uygulamaların ortalaması olarak sürgün sayısı 2.8±0.3 ve yaprak sayısı ise 8.0±0.6 adet/eksplant, sürgün kalınlık düzeyi 2.0±0.1 olarak belirlenmiştir. Ortalama sürgün uzunluğu, yarı katı ortamda (10.1±3.1 mm), sıvı ortamdan (8.0±2.5 mm) daha yüksek bulunmuştur.
Sonuç: Sıvı ortamda eksplantların canlılık oranı yarı katı ortama göre %33.3 daha yüksek bulunmuştur. Bu durum dikkate alınarak canlılık yüzdesine göre hesaplanan sürgün çoğalma oranı sıvı ortamda (%73.6), yarı katı ortamdan (%61.2) %12.4 daha yüksek gerçekleşmiştir. Her iki ortam tipinde de sürgünler genellikle benzer sayıda ve kalitede üretilmiştir. Ortam tiplerinin ortalaması olarak BAP’ın 0.5 mg L-1 dozu (%88.5), 1.0 mg L-1 dozuna (%72.9) göre sürgün çoğaltım oranını artırmıştır.

References

  • Arıcı, S. E. (2008). Bazı sert çekirdekli meyve anaçlarının doku kültürü ile çoğaltılması. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi 3(1), 19-23.
  • Beakbane, A. B. (1977). Plum rootstock-Pixy variety. U.S. Patent No. Plant 4,061.
  • Cantabella, D., Mendoza, C.R., Teixidó, N., Vilaró, F., Torres, R., & Dolcet-Sanjuan, R. (2022). GreenTray® TIS bioreactor as an effective in vitro culture system for the micropropagation of Prunus spp. rootstocks and analysis of the plant-PGPMs interactions, Scientia Horticulturae, 291, 110622. https://doi.org/10.1016/j.scienta.2021.110622
  • Dodds, J. H. & Roberts, L. W. (1993). Experiments in plant tissue culture. Cambridge University Press. New York, 231 p.
  • Dolcet-Sanjuan, R., Casanovas, M., Franquesa, S., Alsina, E., Carrasco-Cuello, F., Torres, E., Rufat, J., Solsona, C., & Teixido, N. (2024). GreenTray®, a TIS bioreactor for plant micropropagation and abiotic or biotic stress bioassays. Applied Sciences, 14(10), 4051. https://doi.org/10.3390/app14104051
  • Dolgun, O., Tekintas, F. E., & Ertan, E. (2008). A histological investigation on graft formation of some nectarine cultivars grafted on Pixy rootstock. World Journal of Agricultural Sciences 4(5), 565-568.
  • Donadio, L. C., Lederman, I. E., Roberto, S. R., & Stucchi, E. S. (2019). Dwarfing-canopy and rootstock cultivars for fruit trees. Revista Brasileira De Fruticultura, 41(3), 1-12. https://doi.org/10.1590/0100-29452019997
  • Gago, D., Sánchez, C., Aldrey, A., Christie, C. B., Bernal, M. Á., & Vidal, N. (2022). Micropropagation of plum (Prunus domestica L.) in bioreactors using photomixotrophic and photoautotrophic conditions. Horticulturae, 8(4), 286. https://doi.org/10.3390/horticulturae8040286
  • Geyik, D., & Canlı, F. A. (2015). Micropropagation of ‘Pixy’ (Prunus institia L.) rootstock. Plant Molecular Biology & Biotechnology. 5, 1-6.
  • Dutta Gupta, S., & Prasad, V. S. S. (2006). Matrix-supported liquid culture systems for efficient micropropagation of floricultural plants. J. A. Teixeira da Silva (Ed.), Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues içinde (487-495. ss.). London: Global Science Books, Ltd.
  • Hartmann, H. T., Kester, D. E., Davies, Jr. F. T., & Geneve, R. L. (2011). Plant Propagation: Principles and Practices (8th Edition). Prentice-Hall, Boston, 915 p.
  • Jones, O. P., & Hopgood, M. E. (1979). The successful propagation in vitro of two rootstocks of Prunus: the plum rootstock Pixy (P. insititia) and the cherry rootstock F12/1 (P. avium). Journal of Horticultural Science, 54(1), 63-66. https://doi.org/10.1080/00221589.1979.11514849
  • Kaushalya, D. B. R., Eeswara, J. P., & Jayasinghe, L. (2023). Development of liquid culture system for rapid multiplication of Gyrinops walla. Tropical Agricultural Research, 34(1), 43-51. http://doi.org/10.4038/tar.v34i1.8603
  • Lal, M, Jamwal, M, Sood Y, Bakshi, P, Sharma, N, Sharma, S, & Kumar, S. (2023). Micropropagation of fruit crops: A review. Plant Science Today, 10(1), 108-117. https://doi.org/10.14719/ pst.1891
  • Lang, G. A. (2024). Guidelines for the choice of stone fruit rootstocks. Italus Hortus, 31, 18-26. https://doi.org/10.26353/j.itahort/2024.1.1826
  • Mehta, M., Ram, R., & Bhattacharya, A. (2014). A simple and cost effective liguid culture system fort he micropropagation of two comeercially important apple rootstocks. Indian Journal of Exprimental Biology, 52, 748-754. https://doi.org/10.4314/AJB.V6I13.57591
  • Mehrotra, S., Goel, M. K., Kukreja, A. K., & Mishra, B. N. (2007). Efficiency of liquid culture systems over conventional micropropagation: A progress towards commercialization. African Journal of Biotechnology, 6, 1484-1492.
  • Murthy, H. N., Joseph, K. S., Paek, K. Y., & Park, S. Y. (2023). Bioreactor systems for micropropagation of plants: present scenario and future prospects. Frontiers in Plant Science, 14, 1159588. https://doi.org/10.3389/fpls.2023.1159588
  • Nirmal, D., Teraiya, S., & Joshi, P. (2023). Liquid culture system: an efficient approach for sustainable micropropagation. Current Agriculture Research Journal, 11(1), 28-42. https://doi.org/10.12944/CARJ.11.1.03.
  • Nowakowska, K., Pińkowska, A., Siedlecka, E., & Pacholczak, A. (2022). The effect of cytokinins on shoot proliferation, biochemical changes and genetic stability of rhododendron ‘Kazimierz Odnowiciel’ in the in vitro cultures. Plant Cell, Tissue and Organ Culture (PCTOC), 149, 675-684. https://doi.org/10.1007/s11240-021-02206-z
  • Pakyürek, M., & Hepaksoy, S. (2020). A research on micropropagation of Pixy rootstock. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 7(8), 146-159. https://doi.org/10.38065/euroasiaorg.31
  • Preil W. (2005). General introduction: a personal reflection on the use of liquid media for in vitro culture. A. K. Hvoslef-Eide, & W. Preil (Ed.), Liquid Culture Systems for in vitro Plant Propagation içinde (1-18. ss.). Dordrecht, The Netherlands: Springer. https://doi.org/10.1007/1-4020-3200-5_1
  • Shabani, Z., Moghadam, E. G., Abedi, B., & Tehranifar, A. (2015). The effect of plant growth regulators and their concentration in vitro on mass propagation of Myrobalan 29C rootstock. Journal of Horticulture and Forestry 7(3), 73-83.
  • Thakur, M., Sharma, V., & Luharch, R. (2021). Propagation of plum (Prunus salicina L.) cultivar Frontier in vitro through control of shoot tip necrosis (STN) and validation of genetic integrityusing ISSR markers. Plant Physiology Reports 26, 238-246. https://doi.org/10.1007/s40502-021-00580-6
  • Uğur, R., Paydaş, S., & Saridas, M. A. (2023). Rootstock breeding and rootstock-scion interaction in Prunus species. Journal of Erciyes Agriculture and Animal Science, 6(2), 7-10.
  • Van Staden, J., Zazimalova E., & George, E. F. (2008). Plant growth regulators II: cytokinins, their analogues and antagonists. E. F. George, M. A. Hall, & G. J. De Clark (Ed.), Plant Propagation by Tissue Culture 3rd Edition Volume 1. The Background içinde (205-226 ss.). Dordrecht, The Netherlands: Springer.
  • Westwood, A. D. (1980). Pixy, a new dwarfing rootstock for plums, Prunus domestica L. Journal of Horticultural Science, 55(4), 425-431. https://doi.org/10.1080/00221589.1980.11514954
  • Wolella, E. K. (2017). Surface sterilization and in vitro propagation of Prunus domestica L. cv. Stanley using axillary buds as explants. Journal of Biotech Research 8, 18-26.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Pomology and Treatment
Journal Section Makaleler
Authors

Alper Ölmez 0009-0007-3826-5919

Hatice Dumanoğlu 0000-0002-7099-7630

Gülüstan Polat 0000-0002-8878-4959

Publication Date June 30, 2025
Submission Date February 22, 2025
Acceptance Date May 27, 2025
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Ölmez, A., Dumanoğlu, H., & Polat, G. (2025). Pixy Erik Klon Anacının Mikro Çoğaltımında Destek Sistemli Sıvı Besin Ortamının Sürgün Çoğaltma Aşamasında Performansı. Akademik Ziraat Dergisi, 14(1), 13-22. https://doi.org/10.29278/azd.1645026