Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite

Kadmiyum Toksisitesinin Ekmeklik Buğday Çeşitlerinin Tane Sterol Konsantrasyonlarına Etkisi

Year 2023, Volume: 12 Issue: 1, 119 - 126, 11.07.2023
https://doi.org/10.29278/azd.1247414

Abstract

Amaç: Araştırmada, sera koşullarında üç farklı (Yunus, Osmaniyem ve Ceyhan-99) ekmeklik buğday çeşidine toksik kadmiyum (Cd) uygulamasının tane campesterol, stigmasterol ve β-sitosterol düzeylerine olan etkisi araştırılmıştır.
Materyal ve Yöntem: Tesadüf parselleri deneme desenine göre gerçekleştirilen çalışmada topraktan 0 ve 20 mg kg-1 Cd uygulaması yapılmıştır. Bitkiler tane olgunluk döneminde hasat edilmiş ve bu örneklerde bitki ve tane verimi ile tane Cd, N, P, K, Zn, Fe, campesterol, stigmasterol ve β-sitosterol konsantrasyonları belirlenmiştir.
Araştırma Bulguları: Araştırma sonucunda toprağa toksik Cd uygulaması ile üç farklı ekmekli buğday çeşidinin kuru madde verimi ile tane veriminde istatiksel olarak önemli (P<0.05) azalmalar meydana gelmiştir. Çeşitler arasında tane veriminde en fazla azalma Osmaniyem (%17.8 azalma), en az azalma ise Yunus (%8.1 azalma) çeşitinde olmuştur. Toprağa Cd uygulaması ile üç ekmeklik buğday çeşitininde Cd konsantrasyonları önemli düzeyde (P<0.05) artmış, buna karşın tane campesterol, stigmasterol, β-sitosterol konsantrasyonları ile besin elementleri (N, P, K, Zn ve Fe) konsantrasyonları azalmıştır. Tane Cd konsantrasyonunun artması ile çeşitlerin ortalama campesterol, stigmasterol ve β-sitosterol konsantrasyonlarında sırası ile %28.6, % 13.6 ve %20 düzeylerinde azalma meydana gelmiştir.
Sonuç: Sonuçlar toksik Cd uygulaması ile ekmeklik buğday çeşitlerinin sterol konsantrasyonlarında önemli düzeyde azalmaya neden olduğu ve çeşitler arasında Cd toksisitesine karşı Yunus çeşidinin toleranslı, Osmaniyem çeşidinin ise hassas olduğu ortaya çıkmıştır.

References

  • Abbas, G., Saqib, M., Akhtar, J., & Murtaza, G. (2017). Physiological and biochemical characterization of Acacia stenophylla and Acacia albida exposed to salinity under hydroponic conditions. Canadian Journal of Forest Research, 47(9), 1293-1301.
  • Abbas, S. Z., Rafatullah, M., Ismail, N., & Lalung, J. (2014). Isolation, identification, and characterization of cadmium resistant Pseudomonas sp. M3 from industrial wastewater. Journal of Waste Management, 2014, 1-6.
  • Ahmad, I., Akhtar, M. J., Zahir, Z. A., & Jamil, A. (2012). Effect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pak. J. Bot, 44(5), 1569-1574.
  • Anonim, (2023a).Tekirdağ Ticaret Borsası. Erişim linki: http://www.tdag-ticbor.org.tr/tr/beyaz_1. Erişim tarihi: 02.01.2023
  • Anonim, (2023b).Tekfen Tarım. Erişim linki: https://www.tekfentarim.com/osmaniyem-ekmeklik-bugday/. Erişim tarihi: 02.02.2023
  • AOAC. (2000). Association of Official Analytical Chemists (13th edition ed.).
  • Aydoğan, S. (2016). Kuru ve sulu yetiştirme şartlarının ekmeklik buğday çeşitlerinin verim ve kalitesine etkisinin belirlenmesi (Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü). Fen Bilimleri Enstitüsü, Tarla Bitkileri Anabilim Dalı, Yüksek Lisans Tezi, sayfa, 50-53.
  • Banas, A., Carlsson, A. S., Huang, B., Lenman, M., Banas, W., Lee, M., Noiriel, A., Benveniste, P., Schaller, H., & Bouvier-Navé, P. (2005). Cellular sterol ester synthesis in plants is performed by an enzyme (phospholipid: sterol acyltransferase) different from the yeast and mammalian acyl-CoA: sterol acyltransferases. Journal of Biological Chemistry, 280(41), 34626-34634.
  • Benveniste, P. (2004). Biosynthesis and accumulation of sterols. Annu. Rev. Plant Biol., 55, 429-457.
  • Bojórquez, C., Frías Espericueta, M. G., & Voltolina, D. (2016). Removal of cadmium and lead by adapted strains of Pseudomonas aeruginosa and Enterobacter cloacae. Revista internacional de contaminación ambiental, 32(4), 407-412.
  • Borchard, N., Siemens, J., Ladd, B., Möller, A., & Amelung, W. (2014). Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil and Tillage Research, 144, 184-194.
  • Bremner, J. (1965). Total nitrogen. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 1149-1178.
  • Cao, Q., Hu, Q.-H., Khan, S., Wang, Z.-J., Lin, A.-J., Du, X., & Zhu, Y.-G. (2007). Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil. Journal of hazardous materials, 148(1-2), 377-382.
  • Chellaiah, E. R. (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Applied water science, 8(6), 154.
  • Ci, D., Jiang, D., Dai, T., Jing, Q., & Cao, W. (2009). Effects of cadmium on plant growth and physiological traits in contrast wheat recombinant inbred lines differing in cadmium tolerance. Chemosphere, 77(11), 1620-1625.
  • Ci, D., Jiang, D., Liu, F., Dai, T., & Cao, W. (2011). Comparisons of cadmium tolerance and accumulation at seedling stage in wheat varieties grown in different decades in China. Acta Physiologiae Plantarum, 33, 1811-1819.
  • Ci, D., Jiang, D., Wollenweber, B., Dai, T., Jing, Q., & Cao, W. (2010). Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis. Acta Physiologiae Plantarum, 32, 365-373.
  • Erdem, H., Tosun, Y. K., & Ozturk, M. (2012). Effect of cadmium-zinc interactions on growth and Cd-Zn concentration in durum and bread wheats. Fresenius Environ Bull, 21(5), 1046-1051.
  • Fodor, E., Szabó-Nagy, A., & Erdei, L. (1995). The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. Journal of plant physiology, 147(1), 87-92.
  • Gallego, S. M., Pena, L. B., Barcia, R. A., Azpilicueta, C. E., Iannone, M. F., Rosales, E. P., Zawoznik, M. S., Groppa, M. D., & Benavides, M. P. (2012). Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environmental and Experimental Botany, 83, 33-46.
  • Hermans, C., Chen, J., Coppens, F., Inzé, D., & Verbruggen, N. (2011). Low magnesium status in plants enhances tolerance to cadmium exposure. New phytologist, 192(2), 428-436.
  • Hernández, L., Ramos, I., Carpena-Ruiz, R., Lucena, J., & Gárate, A. (1996). Effect of cadmium on the distribution of micronutrients in Lactuca spp., maize and pea plants. Fertilizers and Environment: Proceedings of the International Symposium “Fertilizers and Environment”, held in Salamanca, Spain, 26–29, September, 1994,
  • Jali, P., Pradhan, C., & Das, A. B. (2016). Effects of cadmium toxicity in plants: a review article. Sch. Acad. J. Biosci, 4(12), 1074-1081.
  • Jalil, A., Selles, F., & Clarke, J. (1994). Effect of cadmium on growth and the uptake of cadmium and other elements by durum wheat. Journal of Plant Nutrition, 17(11), 1839-1858.
  • Janicka-Russak, M., Kabała, K., Burzyński, M., & Kłobus, G. (2008). Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativu s roots. Journal of Experimental Botany, 59(13), 3721-3728.
  • Jemal, F., Zarrouk, M., & Ghorbal, M. (2000). Effect of cadmium on lipid composition of pepper. In: Portland Press Ltd.
  • Jin, C., Fan, J., Liu, R., & Sun, R. (2015). Single and joint toxicity of sulfamonomethoxine and cadmium on three agricultural crops. Soil and Sediment Contamination: An International Journal, 24(4), 454-470.
  • Kacar, B., & İnal, A. (2008). Bitki Analizleri Kitabı Nobel Yayınları. 1241: 120-164. In: Ankara.
  • Khan, N., Anjum, N., Nazar, R., & Iqbal, N. (2009). Increased activity of ATP-sulfurylase and increased contents of cysteine and glutathione reduce high cadmium-induced oxidative stress in mustard cultivar with high photosynthetic potential. Russian Journal of Plant Physiology, 56, 670-677.
  • Khan, N., Samiullah, Singh, S., & Nazar, R. (2007). Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. Journal of Agronomy and Crop Science, 193(6), 435-444.
  • Moral, R., Cortés, A., Gomez, I., & Mataix-Beneyto, J. (2002). Assessing changes in Cd phytoavailability to tomato in amended calcareous soils. Bioresource technology, 85(1), 63-68.
  • Morsy, A. A., Ali Salama, K. H., Kamel, H. A., & Fahim Mansour, M. M. (2012). Effect of heavy metals on plasma membrane lipids and antioxidant enzymes of Zygophyllum species. Eurasian Journal of Biosciences, 6. Nes, W. D. (2003). Enzyme mechanisms for sterol C-methylations. Phytochemistry, 64(1), 75-95.
  • Ouzounidou, G., Moustakas, M., & Eleftheriou, E. (1997). Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L.) leaves. Archives of Environmental Contamination and Toxicology, 32, 154-160.
  • Piironen, V., & Lampi, A.-M. (2004). Occurrence and levels of phytosterols in foods. Phytosterols as functional food components and nutraceuticals, 1-32.
  • Piironen, V., Lindsay, D. G., Miettinen, T. A., Toivo, J., & Lampi, A. M. (2000). Plant sterols: biosynthesis, biological function and their importance to human nutrition. Journal of the Science of Food and Agriculture, 80(7), 939-966.
  • Quartacci, M. F., Pinzino, C., Sgherri, C. L., Dalla Vecchia, F., & Navari‐Izzo, F. (2000). Growth in excess copper induces changes in the lipid composition and fluidity of PSII‐enriched membranes in wheat. Physiologia Plantarum, 108(1), 87-93.
  • Quilez, J., Garcia-Lorda, P., & Salas-Salvado, J. (2003). Potential uses and benefits of phytosterols in diet: present situation and future directions. Clinical Nutrition, 22(4), 343-351.
  • Riaz, S., Iqbal, M., Hussain, I., Rasheed, R., Ashraf, M. A., Mahmood, S., Younas, M., & Iqbal, M. Z. (2014). Chronic cadmium induced oxidative stress not the DNA fragmentation modulates growth in spring wheat (Triticum aestivum). Int J Agric Biol, 16(4), 789-794. Rizwan, M., Ali, S., Abbas, T., Zia-ur-Rehman, M., Hannan, F., Keller, C., Al-Wabel, M. I., & Ok, Y. S. (2016). Cadmium minimization in wheat: a critical review. Ecotoxicology and environmental safety, 130, 43-53.
  • Rogowska, A., & Szakiel, A. (2020). The role of sterols in plant response to abiotic stress. Phytochemistry Reviews, 19(6), 1525-1538.
  • Ros, R., Cook, D. T., Martinez-Cortina, C., & Picazo, I. (1992). Nickel and cadmium-related changes in growth, plasma membrane lipid composition, ATPase hydrolytic activity and proton-pumping of rice (Oryza sativa L. cv. Bahia) shoots. Journal of Experimental Botany, 43(11), 1475-1481.
  • Schaller, H. (2004). New aspects of sterol biosynthesis in growth and development of higher plants. Plant physiology and biochemistry, 42(6), 465-476.
  • Shanmugaraj, B. M., Malla, A., & Ramalingam, S. (2019). Cadmium stress and toxicity in plants: an overview. Cadmium toxicity and tolerance in plants, 1-17.
  • Shimada, T. L., Ueda, T., & Hara-Nishimura, I. (2021). Excess sterol accumulation affects seed morphology and physiology in Arabidopsis thaliana. Plant Signaling & Behavior, 16(4), 1872217.
  • Simons, K., & Sampaio, J. L. (2011). Membrane organization and lipid rafts. Cold Spring Harbor perspectives in biology, 3(10), a004697.
  • Taşan, M., (2008). Tahıl ve Ürünlerinde Fitosteroller. Türkiye 10. Gıda Kongresi. 21-23 Mayıs 2008, s 399-402, Erzurum.
  • Valitova, J. N., Sulkarnayeva, A. G., & Minibayeva, F. (2016). Plant sterols: diversity, biosynthesis, and physiological functions. Biochemistry (Moscow), 81, 819-834.
  • Vriet, C., Russinova, E., & Reuzeau, C. (2013). From squalene to brassinolide: the steroid metabolic and signaling pathways across the plant kingdom. Molecular plant, 6(6), 1738-1757.

The Effect of Cadmium Toxicity on Grain Sterol Concentrations of Bread Wheat Varieties

Year 2023, Volume: 12 Issue: 1, 119 - 126, 11.07.2023
https://doi.org/10.29278/azd.1247414

Abstract

Objective: The aim of this study was to investigate the effects of toxic cadmium (Cd) applications on grain campesterol, stigmasterol and β-sitosterol concentrations on three different (Yunus, Osmaniyem and Ceyhan-99) bread wheat cultivars under greenhouse conditions.
Materials and Methods: In the study, which was carried out according to the randomized plots experiment design, 0 and 20 mg kg-1 Cd were applied from the soil. Plants were harvested during the grain maturity period and plant and grain yield and grain Cd, N, P, K, Zn, Fe, campesterol, stigmasterol and β-sitosterol concentrations were determined in these samples.
Results: As a result of the research, statistically significant (P<0.05) decreases occurred in plant yield and grain yield of three different bread wheat varieties with the application of toxic Cd to the soil. Among the cultivars, the highest decrease in grain yield was in Osmaniyem (17.8% decrease), and the least decrease was in Yunus (8.1% decrease). With Cd application to the soil, Cd concentrations increased significantly (P<0.05) in three bread wheat cultivars, whereas grain campesterol, stigmasterol, β-sitosterol concentrations and nutrient elements (N, P, K, Zn and Fe) concentrations decreased. With the increase in grain Cd concentration, the average campesterol, stigmasterol and β-sitosterol concentrations of the cultivars decreased by 28.6%, 13.6% and 20%, respectively.
Conclusion: The results revealed that toxic Cd application caused a significant decrease in sterol concentrations of bread wheat cultivars and Yunus cultivar was tolerant and Osmaniyem cultivar sensitive to Cd toxicity among cultivars.

References

  • Abbas, G., Saqib, M., Akhtar, J., & Murtaza, G. (2017). Physiological and biochemical characterization of Acacia stenophylla and Acacia albida exposed to salinity under hydroponic conditions. Canadian Journal of Forest Research, 47(9), 1293-1301.
  • Abbas, S. Z., Rafatullah, M., Ismail, N., & Lalung, J. (2014). Isolation, identification, and characterization of cadmium resistant Pseudomonas sp. M3 from industrial wastewater. Journal of Waste Management, 2014, 1-6.
  • Ahmad, I., Akhtar, M. J., Zahir, Z. A., & Jamil, A. (2012). Effect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pak. J. Bot, 44(5), 1569-1574.
  • Anonim, (2023a).Tekirdağ Ticaret Borsası. Erişim linki: http://www.tdag-ticbor.org.tr/tr/beyaz_1. Erişim tarihi: 02.01.2023
  • Anonim, (2023b).Tekfen Tarım. Erişim linki: https://www.tekfentarim.com/osmaniyem-ekmeklik-bugday/. Erişim tarihi: 02.02.2023
  • AOAC. (2000). Association of Official Analytical Chemists (13th edition ed.).
  • Aydoğan, S. (2016). Kuru ve sulu yetiştirme şartlarının ekmeklik buğday çeşitlerinin verim ve kalitesine etkisinin belirlenmesi (Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü). Fen Bilimleri Enstitüsü, Tarla Bitkileri Anabilim Dalı, Yüksek Lisans Tezi, sayfa, 50-53.
  • Banas, A., Carlsson, A. S., Huang, B., Lenman, M., Banas, W., Lee, M., Noiriel, A., Benveniste, P., Schaller, H., & Bouvier-Navé, P. (2005). Cellular sterol ester synthesis in plants is performed by an enzyme (phospholipid: sterol acyltransferase) different from the yeast and mammalian acyl-CoA: sterol acyltransferases. Journal of Biological Chemistry, 280(41), 34626-34634.
  • Benveniste, P. (2004). Biosynthesis and accumulation of sterols. Annu. Rev. Plant Biol., 55, 429-457.
  • Bojórquez, C., Frías Espericueta, M. G., & Voltolina, D. (2016). Removal of cadmium and lead by adapted strains of Pseudomonas aeruginosa and Enterobacter cloacae. Revista internacional de contaminación ambiental, 32(4), 407-412.
  • Borchard, N., Siemens, J., Ladd, B., Möller, A., & Amelung, W. (2014). Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil and Tillage Research, 144, 184-194.
  • Bremner, J. (1965). Total nitrogen. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 1149-1178.
  • Cao, Q., Hu, Q.-H., Khan, S., Wang, Z.-J., Lin, A.-J., Du, X., & Zhu, Y.-G. (2007). Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil. Journal of hazardous materials, 148(1-2), 377-382.
  • Chellaiah, E. R. (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Applied water science, 8(6), 154.
  • Ci, D., Jiang, D., Dai, T., Jing, Q., & Cao, W. (2009). Effects of cadmium on plant growth and physiological traits in contrast wheat recombinant inbred lines differing in cadmium tolerance. Chemosphere, 77(11), 1620-1625.
  • Ci, D., Jiang, D., Liu, F., Dai, T., & Cao, W. (2011). Comparisons of cadmium tolerance and accumulation at seedling stage in wheat varieties grown in different decades in China. Acta Physiologiae Plantarum, 33, 1811-1819.
  • Ci, D., Jiang, D., Wollenweber, B., Dai, T., Jing, Q., & Cao, W. (2010). Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis. Acta Physiologiae Plantarum, 32, 365-373.
  • Erdem, H., Tosun, Y. K., & Ozturk, M. (2012). Effect of cadmium-zinc interactions on growth and Cd-Zn concentration in durum and bread wheats. Fresenius Environ Bull, 21(5), 1046-1051.
  • Fodor, E., Szabó-Nagy, A., & Erdei, L. (1995). The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. Journal of plant physiology, 147(1), 87-92.
  • Gallego, S. M., Pena, L. B., Barcia, R. A., Azpilicueta, C. E., Iannone, M. F., Rosales, E. P., Zawoznik, M. S., Groppa, M. D., & Benavides, M. P. (2012). Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environmental and Experimental Botany, 83, 33-46.
  • Hermans, C., Chen, J., Coppens, F., Inzé, D., & Verbruggen, N. (2011). Low magnesium status in plants enhances tolerance to cadmium exposure. New phytologist, 192(2), 428-436.
  • Hernández, L., Ramos, I., Carpena-Ruiz, R., Lucena, J., & Gárate, A. (1996). Effect of cadmium on the distribution of micronutrients in Lactuca spp., maize and pea plants. Fertilizers and Environment: Proceedings of the International Symposium “Fertilizers and Environment”, held in Salamanca, Spain, 26–29, September, 1994,
  • Jali, P., Pradhan, C., & Das, A. B. (2016). Effects of cadmium toxicity in plants: a review article. Sch. Acad. J. Biosci, 4(12), 1074-1081.
  • Jalil, A., Selles, F., & Clarke, J. (1994). Effect of cadmium on growth and the uptake of cadmium and other elements by durum wheat. Journal of Plant Nutrition, 17(11), 1839-1858.
  • Janicka-Russak, M., Kabała, K., Burzyński, M., & Kłobus, G. (2008). Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativu s roots. Journal of Experimental Botany, 59(13), 3721-3728.
  • Jemal, F., Zarrouk, M., & Ghorbal, M. (2000). Effect of cadmium on lipid composition of pepper. In: Portland Press Ltd.
  • Jin, C., Fan, J., Liu, R., & Sun, R. (2015). Single and joint toxicity of sulfamonomethoxine and cadmium on three agricultural crops. Soil and Sediment Contamination: An International Journal, 24(4), 454-470.
  • Kacar, B., & İnal, A. (2008). Bitki Analizleri Kitabı Nobel Yayınları. 1241: 120-164. In: Ankara.
  • Khan, N., Anjum, N., Nazar, R., & Iqbal, N. (2009). Increased activity of ATP-sulfurylase and increased contents of cysteine and glutathione reduce high cadmium-induced oxidative stress in mustard cultivar with high photosynthetic potential. Russian Journal of Plant Physiology, 56, 670-677.
  • Khan, N., Samiullah, Singh, S., & Nazar, R. (2007). Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. Journal of Agronomy and Crop Science, 193(6), 435-444.
  • Moral, R., Cortés, A., Gomez, I., & Mataix-Beneyto, J. (2002). Assessing changes in Cd phytoavailability to tomato in amended calcareous soils. Bioresource technology, 85(1), 63-68.
  • Morsy, A. A., Ali Salama, K. H., Kamel, H. A., & Fahim Mansour, M. M. (2012). Effect of heavy metals on plasma membrane lipids and antioxidant enzymes of Zygophyllum species. Eurasian Journal of Biosciences, 6. Nes, W. D. (2003). Enzyme mechanisms for sterol C-methylations. Phytochemistry, 64(1), 75-95.
  • Ouzounidou, G., Moustakas, M., & Eleftheriou, E. (1997). Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L.) leaves. Archives of Environmental Contamination and Toxicology, 32, 154-160.
  • Piironen, V., & Lampi, A.-M. (2004). Occurrence and levels of phytosterols in foods. Phytosterols as functional food components and nutraceuticals, 1-32.
  • Piironen, V., Lindsay, D. G., Miettinen, T. A., Toivo, J., & Lampi, A. M. (2000). Plant sterols: biosynthesis, biological function and their importance to human nutrition. Journal of the Science of Food and Agriculture, 80(7), 939-966.
  • Quartacci, M. F., Pinzino, C., Sgherri, C. L., Dalla Vecchia, F., & Navari‐Izzo, F. (2000). Growth in excess copper induces changes in the lipid composition and fluidity of PSII‐enriched membranes in wheat. Physiologia Plantarum, 108(1), 87-93.
  • Quilez, J., Garcia-Lorda, P., & Salas-Salvado, J. (2003). Potential uses and benefits of phytosterols in diet: present situation and future directions. Clinical Nutrition, 22(4), 343-351.
  • Riaz, S., Iqbal, M., Hussain, I., Rasheed, R., Ashraf, M. A., Mahmood, S., Younas, M., & Iqbal, M. Z. (2014). Chronic cadmium induced oxidative stress not the DNA fragmentation modulates growth in spring wheat (Triticum aestivum). Int J Agric Biol, 16(4), 789-794. Rizwan, M., Ali, S., Abbas, T., Zia-ur-Rehman, M., Hannan, F., Keller, C., Al-Wabel, M. I., & Ok, Y. S. (2016). Cadmium minimization in wheat: a critical review. Ecotoxicology and environmental safety, 130, 43-53.
  • Rogowska, A., & Szakiel, A. (2020). The role of sterols in plant response to abiotic stress. Phytochemistry Reviews, 19(6), 1525-1538.
  • Ros, R., Cook, D. T., Martinez-Cortina, C., & Picazo, I. (1992). Nickel and cadmium-related changes in growth, plasma membrane lipid composition, ATPase hydrolytic activity and proton-pumping of rice (Oryza sativa L. cv. Bahia) shoots. Journal of Experimental Botany, 43(11), 1475-1481.
  • Schaller, H. (2004). New aspects of sterol biosynthesis in growth and development of higher plants. Plant physiology and biochemistry, 42(6), 465-476.
  • Shanmugaraj, B. M., Malla, A., & Ramalingam, S. (2019). Cadmium stress and toxicity in plants: an overview. Cadmium toxicity and tolerance in plants, 1-17.
  • Shimada, T. L., Ueda, T., & Hara-Nishimura, I. (2021). Excess sterol accumulation affects seed morphology and physiology in Arabidopsis thaliana. Plant Signaling & Behavior, 16(4), 1872217.
  • Simons, K., & Sampaio, J. L. (2011). Membrane organization and lipid rafts. Cold Spring Harbor perspectives in biology, 3(10), a004697.
  • Taşan, M., (2008). Tahıl ve Ürünlerinde Fitosteroller. Türkiye 10. Gıda Kongresi. 21-23 Mayıs 2008, s 399-402, Erzurum.
  • Valitova, J. N., Sulkarnayeva, A. G., & Minibayeva, F. (2016). Plant sterols: diversity, biosynthesis, and physiological functions. Biochemistry (Moscow), 81, 819-834.
  • Vriet, C., Russinova, E., & Reuzeau, C. (2013). From squalene to brassinolide: the steroid metabolic and signaling pathways across the plant kingdom. Molecular plant, 6(6), 1738-1757.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Soil Sciences and Ecology
Journal Section Makaleler
Authors

Halil Erdem 0000-0002-3296-1549

Publication Date July 11, 2023
Published in Issue Year 2023 Volume: 12 Issue: 1

Cite

APA Erdem, H. (2023). Kadmiyum Toksisitesinin Ekmeklik Buğday Çeşitlerinin Tane Sterol Konsantrasyonlarına Etkisi. Akademik Ziraat Dergisi, 12(1), 119-126. https://doi.org/10.29278/azd.1247414