Research Article
BibTex RIS Cite

Farklı Sıcaklıkta Üretilen Biyokömür Uygulamasının Mısır Bitkisinin Verimi, Besin Elementi Alımı ve Karbon Mineralizasyonuna Etkisi

Year 2024, Volume: 13 Issue: 2, 376 - 390, 31.12.2024
https://doi.org/10.29278/azd.1532898

Abstract

Amaç: Bu çalışmada Türkiye’de önemli düzeyde üretimi yapılan fındığın (Coryllus sp.) nuks tipindeki meyvelerinin kupululalarından iki farklı sıcaklıkta (400 oC - 500 oC) elde edilen biyokömürün, % 0, % 1, % 2, % 3 ve % 4 (w/w) oranında toprağa ilave edilerek mısır bitkisinin kuru madde üretimi, % C, % N, C/N, K, P, Fe, Mn, Zn, Cu içerikleri ve topraktaki % karbon mineralizasyon oranlarının belirlenmesi amaçlanmıştır.
Materyal ve Yöntem: Çalışmada Ordu ili Mesudiye ilçesinden toplanan fındık kupulaları, Sivas Koyulhisar ilçesinden alınan tarım toprakları kullanılmıştır. Tarım alanlarından alınan topraklarda, tekstür tipi Bouyoucos yöntemiyle, pH’sı ve total tuz içerikleri pH-metre ve Wheatstone köprüsü yöntemiyle, kireç içerikleri Scheibler kalsimetresiyle, tarla kapasitesi 1/3 atm’lik basınçlı tencere, organik C içeriği Anne metoduyla, toplam N içeriği Kjeldahl yöntemiyle belirlenmiştir. Sera koşullarında tesadüfi parselleri deneme desenine göre, plastik saksılarda 5 farklı dozda ve temel gübreleme, iki farklı sıcaklıkta üretilen biyokömür kullanılarak mısır bitkisi yetiştirilmiştir. Bitki örneklerinde % C Anne metodu, N Kjeldahl destilasyon yöntemi, P kolorimetrik spektrofotometre cihazında, K, Mg, Zn, Mn, Fe ve Cu ise Atomik Absorbsiyon Spektrofotometre yöntemiyle belirlenmiştir. Topraklarda sera denemesine paralel olarak biyokömür ve temel gübreleme uygulamaları kontrollü koşullarda 28 oC, ortam sıcaklığında, tarla kapasitesinin %80’i nem içeriğinde 70 gün süreyle CO2 respirasyon metodu kullanılarak karbon mineralizasyonları belirlenmiş ve literatürdeki formüller ile karbon mineralleşme oranları hesaplanmıştır.
Araştırma Bulguları: Araştırma bulguları, en yüksek kuru madde üretiminin 14.57 g/saksı ile %1 BD400 (400 °C’de üretilmiş Biyokömür) uygulamasında elde edildiğini göstermiştir. Azot konsantrasyonunda %3 BD500 (500 °C’de üretilmiş Biyokömür), fosfor konsantrasyonunda %2 BD400, potasyum konsantrasyonunda ise %4 BD400 uygulamaları önemli uygulamalar olmuştur. Karbon mineralizasyonu bakımından 400 °C’de üretilen biyokömürün %0, %1, %2, %3, %4 dozları ve temel gübreleme uygulamalarında, kontrol grubundan (% 0 BD) sadece % 3 BD400 uygulamasının düşük olduğu diğer uygulamaların ise kontrol grubuna göre biraz daha yüksek olduğu belirlenmiştir. Toprakların 70 günlük karbon mineralizasyonlarına göre kontrol grubunda % 0 BD 1581 µg CO2-C g kuru toprak-1 iken; 400 °C’de üretilen biyokömür uygulamalarınında %1, %2, %3, %4 dozlarında sırasıyla 1628, 1639, 1572, 1603 µg CO2-C gkt-1; 500 °C’de üretilen biyokömürün %1, %2, %3, %4 dozlarında sırasıyla 1563, 1528, 1500, 1522 µg CO2-C gkt-1 ve temel gübre uygulamasında ise 1039 µg CO2-C gkt-1 olarak belirlenmiştir.
Sonuç: Genel olarak, mısır bitkilerinin makro element konsantrasyonlarına 400 oC’de üretilen biyokömür uygulamaları, mikro element konsantrasyonlarına ise 500 oC’de üretilen biyokömür uygulamaları daha fazla etkide bulunmuştur. 500 °C’de üretilen biyokömürün %1, %2, %3, %4 dozları ve temel gübreleme uygulamalarında toprakların karbon mineralizasyonu, kontrol grubundan düşük olarak bulunmuştur. Uygulamada toprak karbonlarının mineralleşme oranlarında ise 400 °C’deki oranlar 500 °C’dekine göre daha yüksek olup her iki derecede elde edilen biyokömürün eklenmesi sonucunda en yüksek toprak karbon mineralleşme oranı kontrol grubunda belirlenmiştir.

Supporting Institution

Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi CÜBAP birimi

Project Number

KMYO-006 CÜBAP

Thanks

Isparta Uygulamalı Bilimler Üniversitesi Ziraat Fakültesi Toprak Bilimi ve Bitki Besleme Bölümü- Prof. Dr. Ali ÇOŞKAN

References

  • Abdullah, H., Mediaswanti, K.A., & Wu, H.W. (2010). Biochar as a fuel: 2. Significant differences in fuel quality and ash properties of biochars from various biomass components of mallee trees. Energy Fuels, 24,1972-1979.
  • Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., & Ok, Y.S. (2014). Biochar as a sorbent for contaminant management in soil and water: A Review. Chemosphere 99, 19-33.
  • Ahmed, F., Islam, M., & Iqbal, M. (2017). Biochar amendment improves soil fertility and productivity of mulberry plant. Eurasian Journal of Soil Science, 6 (3), 226-237.
  • Akça, M.O., & Namli, A. (2015). Effects of poultry litter biochar on soil enzyme activities and tomato, pepper and lettuce plants growth. Eurasian Journal of Soil Science, 4, (3), 161-168.
  • Alef, K. 1995. Soil Respiration. K. Alef and P. Nannipieri (Ed.), Methods in applied Soil Microbiology and Biochemistry, 214-219. ss.).San Diego: Academic Press.
  • Arın, A., & Coşkan, A. (2021). Biyokömür uygulamalarının karadeniz bölgesi toprağının ph’sına ve bazı biyolojik aktivite parametrelerine etkileri. Isparta Uygulamalı Bilimler Üniversitesi Ziraat Fakültesi Dergisi, 16(2), 187-199.
  • Atkinson, C.J., Fitzgerald, J.D., & Hipps, N.A. (2010).Potential mechanisms for achieving agricultural benefits from biyokömür application to temperate soils: A review. Plant and Soil 337, 1-18.
  • Azargohar, R., & Dalai, A.K. (2008). Steam and KOH activation of biochar: Experimental and modeling studies. Microporous Mesoporous Mater, 110, 413-421.
  • Bouyoucos, G.S. (1951). A recalibration of the hydrometer for mohing mechanical analysis of soil. Agronomy Journal. 43(9), 434-438.
  • Brantley, K.E., Savin, M.C., Brye, K.R., & Longer, D.E. (2015). Pine woodchip biochar impact on soil nutrient concentrations and maize yield in a silt loam in the Mid-Southern U.S. Agriculture 5(1), 30-47. https://doi.org/10.3390/agriculture5010030
  • Bremner, J. M. (1965). Total nitrogen. Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties 9.2, Agronmy Monograph, 1149-1178.
  • Bridgwater, A.V. (1994). Catalysis in thermal biomass conversion. Applied Catalysis A: General, 116(1-2), 5-47. https://doi.org/10.1016/0926-860X(94)80278-5
  • Cely, P., Tarquis, A. M., Paz-Ferreiro, J., Méndez, A., & Gascó, G. (2014). Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar. Solid Earth, 5, 585-594.
  • Çağlar, K. Ö. (1949). Toprak bilgisi. Ankara: Ankara Üniversitesi Ziraat Fakültesi Yayınları
  • Çakır, H. N., & Çimrin, K.M. (2018). Kentsel arıtma çamur uygulamalarının etkisi:I. Mısır bitkisi ve topraktaki bazı besin maddesi (N, P, K, Ca, Mg) içerikleri üzerine etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 21(6), 882-890.
  • Çelik, A., İnan, M., & Sakin, E. (2019). Toprağa uygulanan tütün ve badem atıklarından elde edilen biyokömürlerin elementel analizleri ve SEM özelliklerinin karşılaştırılması. Harran Tarım ve Gıda Bilimleri Dergisi, 23(4), 500-510.
  • Demirbas, A., Karakoy, T., Durukan, H., & Erdem, H. (2017). The impacts of the biochar addition in different doses on yield and nutrient uptake of the chickpea plant (Cicer arietinum L.) under the conditions with and without incubation. Fresenius Enviromental Bulletin, 26,(12A), 8328-8336.
  • Demirbaş, A., & Coşkan, A. (2019). Biyokömür ve kadmiyum uygulamalarının mısır bitkisinin verimine ve besin elementleri alımına etkileri. Turkish Journal of Agriculture-Food Science and Technology, 7, 109-114.
  • Duchaufour, P. (1970). Precis de Pedologie. Masson et Cie(3rd ed.). Paris, 435-437.
  • Durukan, H., Demirbaş, A., & Türkekul, İ. (2020). Effects of biochar rates on yield and nutrient uptake of sugar beet plants grown under drought stress. Communicatıons in Soil Science and Plant Analysis, 51(21), 2735-2745.
  • Erdem, H., Kınay, A., Gunal, E., Yaban, H., & Tutus, Y. (2017). The effects of biochar application on cadmium uptake of tobacco. Carpathian Journal of Earth and Environmental Sciences, 12(2), 447-456.
  • Ergün, Y.A. (2017). Biyokömür ve ahır gübresi uygulamalarının topraktaki bazı enzim aktivitelerine, CO2 üretimine, besin elementi içeriğine ve domates bitkisinin gelişimine etkisi. (Yüksek lisans tezi, Ordu Üniversitesi Fen Bilimleri Enstitüsü,Ordu.
  • Fang, Y., Singh, B., & Singh, B. P. (2015). Effect of temperature on biochar priming effects and its stability in soils. Soil Biology and Biochemistry, 80, 136-145.
  • Gaskin, J. W., Steiner, C., Harris, K, Das, K.C., & Bibens, B. (2008). Effect of low-temperature pyrolis conditions on biochar for agricultural use. American Society of Agricultural Biological Engineers, 51(6), 2061-2069.
  • Githinji, L. (2014). Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Archives of Agronomy and Soil Science, 60(4), 457-470.
  • Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoals a review. Biology and Fertility of Soils, 35, 219-230.
  • Glaser, B., Parr, M., Braun, C., & Kopolo, G. (2009). Biochar is carbon negative. Nature Geoscience, 2, 1-2.
  • Günal, E., Erdem, H., & Kaplan, A. (2017). Biyokömür ilavesinin toprakta nitrat ve amonyum yıkanmasına etkileri. Harran Tarım ve Gıda Bilimleri Dergisi, 21(1), 73-83.
  • Hansen, V., Müller-Stöver, D., Ahrenfeldt, J., Holm, J. K., Henriksen, U. B., & Hauggaard-Nielsen, H. (2015). Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass and Bioenergy, 72, 300-308.
  • Hardie, M. A., Oliver, G., Clothier, B. E., Bound, S. A., Green, S. A., & Close, D.C. (2015). Effect of biochar on nutrient leaching in a young apple orchard. Journal of Environmental Quality, 44(4), 1273-1282.
  • He, L., Fan, S., Müller, K., Hu, G., Huagang, H., Zhang, X., Lin, X., Che, L., & Wang, H. (2015). Biochar reduces the bioavailability of di-(2-ethylhexyl) phthalate in soil. Chemosphere, 142, 24-27.
  • Hossain, M.K., Strezov, V., Chan, K.Y., Ziolkowski, A., & Nelson, F.P. (2011). Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92(1), 223-228.
  • Huang, Y., Tao, B., Lal, R., Lorenz, K., Jacinthe, P. A., Shrestha, R. K., ... & Ren, W. (2023). A global synthesis of biochar's sustainability in climate-smart agriculture-Evidence from field and laboratory experiments. Renewable and Sustainable Energy Reviews, 172, 113042.
  • Ibrahim, H.M., Al-Wabel, M.I., Usman, A.R., & Al-Omran, A. (2013). Effect of conocarpus biochar application on the hydraulic properties of a sandy loam soil. Soil Science, 178(4) 165-173.
  • Ippolito, J.A., Stromberger, M.E., Lentz, R.D., & Dungan, R.S. (2014). Hardwood biochar influences calcareous soil physicochemical and microbiological status. Journal of Enviromental Quality, 43, 681-689.
  • Ippolito, J.A., Ducey, T. F., Cantrell, K. B., Novak, J. M., & Lentz, R. D. (2016). Designer, acidic biochar influences calcareous soil characteristics. Chemosphere, 142, 184-191.
  • Jackson, M.L. (1958). Soil chemical analysis. New Jersey: Prentice-Hall Inc.
  • Joseph, S., Pow, D., Dawson, K.,Mitchell, D.R.G., Rawal, A., Hook, J., Taherymoosavi, S., Van Zwieten, L., Rust, J., Donne, S., Munroe, P., Pace, B., Graber, E., Thomas, T., Nielsen, S., Ye, J., Lin, Y., Pan, G.X., Li, L.Q., & Solaiman, Z.M. (2015).Feeding biochar to cows: An innovative solution for improving soil fertility and farm productivity. Pedosphere, 25, 666-679.
  • Kacar, B., & Inal, A. (2008). Plant analysis. Ankara: Nobel Press.
  • Kanthle, A. K., Lenka, N. K., Lenka, S., & Tedia, K. (2016). Biochar impact on nitrate leaching as influenced by native soil organic carbon in an inceptisol of central India. Soil and Tillage Research, 157, 65-72.
  • Kaya, E.C., Akça, H., Taşkın, M.B., Mounirou, M.M., & Kaya, T. (2019). Biyokömür ve fosfor uygulamalarının mısır ve çeltik bitkilerinin gelişimi ve mineral element konsantrasyonlarına etkileri. Toprak Su Dergisi, 8(1), 46-54.
  • Klute, A. (1986). Water retention: laboratory methods. Methods of soil analysis: part 1 physical and mineralogical methods, 5, 635-662.
  • Koçak, B., & Ortaş, İ. (2021). Short-term Eucalyptus and Phragmites biochar’s efficiency in mineralization of soil carbon. Journal of Soil Science and Plant Nutrition, 21(4), 3346-3345.
  • Korkmaz, H.E., Akgün, M., Çelebi, M.S., & Korkmaz, K. (2023). Fındık Zurufu ve Biyoçarından Üretilen Demir Nanopartiküllerinin (FeONP) Yaşlanmış Börülce Tohumlarında Çimlenme Üzerine Etkisi, Akademik Ziraat Dergisi, 12(Special Issue), 193-202.
  • Laird, D.A. (2008). The charcoal vision: A win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal, 100(1), 178-181.
  • Lehmann, J., Silva, J.P., Steiner, C., Nehls, T., Zech, W., & Glaser, B. (2003). Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil, 249- 343.
  • Lehmann, J., Gaunt, J., & Rondon, M. (2006). Biochar sequestration in terrestrial ecosystems A review. Mitigation and Adaptation Strategies for Global Change, 11(2), 403-427.
  • Lehmann, J. (2007a). Bio-energy in the black. Frontiers in Ecology and The Environments, 5, 381-387.
  • Lehmann, J. (2007b). A handful of carbon. Nature 447, 143-144.
  • Liu, Y.X., Yang, M., Wu, Y.M., Wang, H.L., Chen, Y.X., Wu, W.X., & Chen, Y. (2011). Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. Journal of Soils Sediments,11, 930-939.
  • Lorenz, K., & Lal, R. (2014). Biochar application to soil for climate change mitigation by soil organic carbon sequestration. Journal of Plant Nutrition and Soil Science, 177, 651-670.
  • Lue, K., Yang, X., Shen, J., Robinson, B., Huang, H., Liu, D., Bolan, N.S., Pei, J., & Wang, H. (2014). Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agriculture Ecosystems & Environment, 191, 124-132.
  • Manirakiza N., & Şeker, C. (2020). Effects of compost and biochar amendments on soil fertility and crop growth in a calcareous soil. Journal of Plant Nutrition, 43(20), 3002–3019.
  • Mathews, J.A. (2008). Viewpoint: Carbon-negative biofuels. Energy Policy, 36(3) 940-945.
  • Mukherjee, A., Lal, R., & Zimmerman, A.R. (2014). Impacts of biochar and other amendments on soil-carbon and nitrogen stability: A laboratory column study. Soil Science Society of American Journal, 78(4), 1258-1266.
  • Murphy, L., & Riley, J.P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36.
  • Namlı, A., Akça, O.M., & Akça, H. (2017). Tarımsal atıklardan elde edilen biyokömürün buğday bitkisinin gelişimi ve bazı toprak özellikleri üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 5(1), 39-47.
  • Ogawa, M., Okimori, Y., & Takahashi, F. (2006). Carbon sequestration by carbonization of biomass and forestation: Three case studies. Mitigation and Adaptation Strategies for Global Change, 11, 429-444.
  • Saygan, E.P., & Aydemir, S. (2016). Harran Ovası kireçli killi toprak özellikleri üzerine antepfıstığı dış kabuğu biyokömür uygulamasının etkisi. Harran Tarım ve Gıda Bilimleri Dergisi, 20(4), 301-312.
  • Schaefer, R. (1967). Characteres et evolution des activites microbiennes dans une chaine de sols hidromorphes mesotrophiques de la plaine d’Alsace, Revue d’Ecologie et de Biologie du Sol, 4, 567-592.
  • Shackley, S., Carter, S., Knowles, T., Middelink, E., Haefele, S., Sohi, S., & Haszeldine, S. (2012). Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context, chemical properties, environmental and health and safety issues. Energy Policy, 42, 49-58.
  • Sika, M.P., & Hardie, A.G. (2014). Effect of pine wood biochar on ammonium nitrate leaching and availability in A South African sandy soil. European Journal of Soil Science, 65(1), 113-119.
  • Skjemstad, J.O., Reicosky, D., Wilts, A.R., & McGowan, J.A. (2002). Charcoal carbon in agricultural soils. Soil Science Society of America Journal, 64(4), 1249-1255.
  • Sohi, S.P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105(1), 47-82.
  • Subedi, R., Taupe, N., Pelissetti, S., Petruzzelli, L., Bertora, C., Leahy, J.J., & Grignani, C. (2016). Greenhouse gas emissions and soil properties following amendment with manure derived biochars: Influence of pyrolysis temperature and feedstock type. Journal of Environmental Management, 166, 73-83.
  • Tepecik, M., Kayıkçıoğlu, H.H., & Kılıç, S. (2022). Farklı Piroliz Sıcaklıklarında Elde Edilen Biyokömürün Mısır Bitkisinin Bitki Besin Elementleri Üzerine Etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 59(1), 171-181.
  • Tsang, D.W., & Yip, A.K. (2014). Comparing chemical-enhanced washing and waste-based stabilisation approach for soil remediation. Journal of Soils and Sediments, 4, 936-947.
  • United States Salinity Laboratory Staff. (1954). Diagnosis and Improvement of, Saline and Alkaline Soils. L. A. Richards(Ed.). United States Department of Agriculture Handbook, 60, Washington: United State Government Printing Office.
  • Wang, J., Xiong, Z., & Kuzyakov, Y. (2016). Biochar stability in soil: Meta-analysis of decomposition and priming effects. Global Change Biology Bioenergy, 8(3), 512-523.
  • Winsley, P. (2007). Biyochar and bioenergy production for climate change mitigation. New Zealand Science Review, 64(1), 5-10.
  • Woolf, D., Amonette, J.E., Street-Perrott, F.A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1(56), 1-9.
  • Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., & Gao, B. (2013). Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research, 20(1), 358-368.
  • Yaman, E., Apaydın, E., Gültaş, H.E., & Özbay, N. (2019). Ceviz kabuğunun karbonizasyonu ile elde edilen katı ürününün toprak düzenleyici olarak kullanılması. Bilecik Şeyh Edepali Üniversitesi Fen Bilimleri Dergisi, 6, 106-116.
  • Yang, Y., Shaoqiang, M., Yi, Z., Ming, J., Yongqiang, X., & Jiawei, C. (2015). A field experiment on enhancement of crop yield by rice straw and maize stalk-derived biochar in Northern China. Sustainability, 7, 13713-13725.
  • Yang, Y., Sun, K., Han, L., Chen, Y., Liu, J., & Xing, B. (2022). Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, Aging and Soil Clay Content. Soil Biology and Biochemistry, 169.
  • Yılmaz, F.I., & Kurt, S. (2016). Biyokömür ve vermikompost uygulamalarının toprağın bazı biyolojik özellikleri üzerine etkisi. Toprak Bilimi ve Bitki Besleme Dergisi, 6(2),143-150.
  • Yip, K., Wu, H., & Zhang, D.K. (2007). Effect of inherent moisture in collie coal during pyrolysis due to in-situ steam gasification. Energy Fuels, 21, 2883-2891.
  • Yip, K., Fujun, T., Jun-chiro, H., & Hongwei, W. (2010). Effect of alkali and alkaline earth metallic species on biochar reactivity and syngas compositions during steam gasification. Energy Fuels, 24, 173-181.
  • Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., Bolan, N.S., Pei, J., & Huang, H. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science Pollution Research, 20, 8472-8483.
  • Zhang, X., He, L., Sarmah, A.K., Lin, K., Liu, Y., Li, J., & Wang, H. (2014). Retention and release of diethyl phthalate in biochar-amended vegetable garden soils. Journal of Soils and Sediments, 14, 1790-1799.

The Effect of Biochar Application Produced at Different Temperatures on Yield, Nutrient Uptake, and Carbon Mineralization of Maize Plants

Year 2024, Volume: 13 Issue: 2, 376 - 390, 31.12.2024
https://doi.org/10.29278/azd.1532898

Abstract

Objective: In this study, it was aimed to determine the dry matter production, % C, % N, % C/N, C/N, K, P, Fe, Mn, Zn, Cu contents and % carbon mineralization rates in the soil of maize plant by adding biochar obtained from the cupules of hazelnut (Coryllus sp.) fruits at two different temperatures (400 °C - 500 °C) at the rate of 0 %, 1 %, 2 %, 3 % and 4 % (w/w) to the soil.
Materials and Methods: Hazelnut cupulas collected from Mesudiye district of Ordu province and agricultural soils from Koyulhisar district of Sivas were used in the study. In the soils taken from the agricultural fields, texture type was determined by Bouyoucos method, pH and total salt content measured by pH-meter and Wheatstone bridge method, lime content determined by Scheibler calcimeter, field capacity by 1/3 atm pressure cooker, organic C and total N contents values analyzed by Anne and Kjeldahl methods, respectively. Under greenhouse conditions, maize plants were grown in plastic pots according to randomized plot experiment desihn. Biochar obtained from 2 different temperatures 400 and 500 0C were applied 5 different doses (0%, 1%, 2%, 3%, 4% w/w) and basic fertilization was done. In plant samples, % C was determined by Anne method, N by Kjeldahl distillation method, P by colorimetric spectrophotometer, K, Mg, Zn, Mn, Fe and Cu by Atomic Absorption Spectrophotometer. In parallel with the greenhouse experiment, biochar and basic fertilization applications in soils under controlled conditions (28 °C, humidified at 80% of field capacity, 70 days), carbon mineralization was determined using CO2 respiration method and carbon mineralization rates were calculated with the formulas in the literature.
Results: The research results showed that the highest dry matter production was obtained in the 1% BD400 application at 14.57 g/pot. Applications of 3% BD500 in nitrogen concentration, 2% BD400 in phosphorus concentration, and 4% BD400 in potassium concentration were important applications. In general, biochar applications produced at 400 °C had a greater effect on macro element concentrations of maize plants, and biochar applications produced at 500 °C on micro element concentrations. 0%, 1%, 2%, 3%, 4% doses of biochar produced at 400 °C and basic fertilization applications, other applications where only 3% BD400 application is lower than the control group (0% BD) are slightly higher than the control group. determined to be high. Carbon mineralizations were 0 % BD 1581 µg CO2-C g dried soil-1in the control group; 1628, 1639, 1572, 1603 µg CO2-C g dried soil-1;1563, 1528, 1500, 1522 µg CO2-C g dried soil-1in 1%, 2%, 3%, 4% doses of biochar produced at 500 °C and 1039 µg CO2-C gkt-1 in basic fertilizer application, respectively.
Conclusion: In general, biochar applications produced at 400 oC had more effect on macro element concentrations of maize plants, while biochar applications produced at 500 oC had more effect on micro element concentrations. As for the mineralization rates of soil carbon, in practice, the mineralization rates at 400 °C are higherthan those at 500 °C, and as a result of the addition of biochar obtained at both degress, the highest soil carbon mineralization rate was determined in the control group.

Project Number

KMYO-006 CÜBAP

References

  • Abdullah, H., Mediaswanti, K.A., & Wu, H.W. (2010). Biochar as a fuel: 2. Significant differences in fuel quality and ash properties of biochars from various biomass components of mallee trees. Energy Fuels, 24,1972-1979.
  • Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., & Ok, Y.S. (2014). Biochar as a sorbent for contaminant management in soil and water: A Review. Chemosphere 99, 19-33.
  • Ahmed, F., Islam, M., & Iqbal, M. (2017). Biochar amendment improves soil fertility and productivity of mulberry plant. Eurasian Journal of Soil Science, 6 (3), 226-237.
  • Akça, M.O., & Namli, A. (2015). Effects of poultry litter biochar on soil enzyme activities and tomato, pepper and lettuce plants growth. Eurasian Journal of Soil Science, 4, (3), 161-168.
  • Alef, K. 1995. Soil Respiration. K. Alef and P. Nannipieri (Ed.), Methods in applied Soil Microbiology and Biochemistry, 214-219. ss.).San Diego: Academic Press.
  • Arın, A., & Coşkan, A. (2021). Biyokömür uygulamalarının karadeniz bölgesi toprağının ph’sına ve bazı biyolojik aktivite parametrelerine etkileri. Isparta Uygulamalı Bilimler Üniversitesi Ziraat Fakültesi Dergisi, 16(2), 187-199.
  • Atkinson, C.J., Fitzgerald, J.D., & Hipps, N.A. (2010).Potential mechanisms for achieving agricultural benefits from biyokömür application to temperate soils: A review. Plant and Soil 337, 1-18.
  • Azargohar, R., & Dalai, A.K. (2008). Steam and KOH activation of biochar: Experimental and modeling studies. Microporous Mesoporous Mater, 110, 413-421.
  • Bouyoucos, G.S. (1951). A recalibration of the hydrometer for mohing mechanical analysis of soil. Agronomy Journal. 43(9), 434-438.
  • Brantley, K.E., Savin, M.C., Brye, K.R., & Longer, D.E. (2015). Pine woodchip biochar impact on soil nutrient concentrations and maize yield in a silt loam in the Mid-Southern U.S. Agriculture 5(1), 30-47. https://doi.org/10.3390/agriculture5010030
  • Bremner, J. M. (1965). Total nitrogen. Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties 9.2, Agronmy Monograph, 1149-1178.
  • Bridgwater, A.V. (1994). Catalysis in thermal biomass conversion. Applied Catalysis A: General, 116(1-2), 5-47. https://doi.org/10.1016/0926-860X(94)80278-5
  • Cely, P., Tarquis, A. M., Paz-Ferreiro, J., Méndez, A., & Gascó, G. (2014). Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar. Solid Earth, 5, 585-594.
  • Çağlar, K. Ö. (1949). Toprak bilgisi. Ankara: Ankara Üniversitesi Ziraat Fakültesi Yayınları
  • Çakır, H. N., & Çimrin, K.M. (2018). Kentsel arıtma çamur uygulamalarının etkisi:I. Mısır bitkisi ve topraktaki bazı besin maddesi (N, P, K, Ca, Mg) içerikleri üzerine etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 21(6), 882-890.
  • Çelik, A., İnan, M., & Sakin, E. (2019). Toprağa uygulanan tütün ve badem atıklarından elde edilen biyokömürlerin elementel analizleri ve SEM özelliklerinin karşılaştırılması. Harran Tarım ve Gıda Bilimleri Dergisi, 23(4), 500-510.
  • Demirbas, A., Karakoy, T., Durukan, H., & Erdem, H. (2017). The impacts of the biochar addition in different doses on yield and nutrient uptake of the chickpea plant (Cicer arietinum L.) under the conditions with and without incubation. Fresenius Enviromental Bulletin, 26,(12A), 8328-8336.
  • Demirbaş, A., & Coşkan, A. (2019). Biyokömür ve kadmiyum uygulamalarının mısır bitkisinin verimine ve besin elementleri alımına etkileri. Turkish Journal of Agriculture-Food Science and Technology, 7, 109-114.
  • Duchaufour, P. (1970). Precis de Pedologie. Masson et Cie(3rd ed.). Paris, 435-437.
  • Durukan, H., Demirbaş, A., & Türkekul, İ. (2020). Effects of biochar rates on yield and nutrient uptake of sugar beet plants grown under drought stress. Communicatıons in Soil Science and Plant Analysis, 51(21), 2735-2745.
  • Erdem, H., Kınay, A., Gunal, E., Yaban, H., & Tutus, Y. (2017). The effects of biochar application on cadmium uptake of tobacco. Carpathian Journal of Earth and Environmental Sciences, 12(2), 447-456.
  • Ergün, Y.A. (2017). Biyokömür ve ahır gübresi uygulamalarının topraktaki bazı enzim aktivitelerine, CO2 üretimine, besin elementi içeriğine ve domates bitkisinin gelişimine etkisi. (Yüksek lisans tezi, Ordu Üniversitesi Fen Bilimleri Enstitüsü,Ordu.
  • Fang, Y., Singh, B., & Singh, B. P. (2015). Effect of temperature on biochar priming effects and its stability in soils. Soil Biology and Biochemistry, 80, 136-145.
  • Gaskin, J. W., Steiner, C., Harris, K, Das, K.C., & Bibens, B. (2008). Effect of low-temperature pyrolis conditions on biochar for agricultural use. American Society of Agricultural Biological Engineers, 51(6), 2061-2069.
  • Githinji, L. (2014). Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Archives of Agronomy and Soil Science, 60(4), 457-470.
  • Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoals a review. Biology and Fertility of Soils, 35, 219-230.
  • Glaser, B., Parr, M., Braun, C., & Kopolo, G. (2009). Biochar is carbon negative. Nature Geoscience, 2, 1-2.
  • Günal, E., Erdem, H., & Kaplan, A. (2017). Biyokömür ilavesinin toprakta nitrat ve amonyum yıkanmasına etkileri. Harran Tarım ve Gıda Bilimleri Dergisi, 21(1), 73-83.
  • Hansen, V., Müller-Stöver, D., Ahrenfeldt, J., Holm, J. K., Henriksen, U. B., & Hauggaard-Nielsen, H. (2015). Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass and Bioenergy, 72, 300-308.
  • Hardie, M. A., Oliver, G., Clothier, B. E., Bound, S. A., Green, S. A., & Close, D.C. (2015). Effect of biochar on nutrient leaching in a young apple orchard. Journal of Environmental Quality, 44(4), 1273-1282.
  • He, L., Fan, S., Müller, K., Hu, G., Huagang, H., Zhang, X., Lin, X., Che, L., & Wang, H. (2015). Biochar reduces the bioavailability of di-(2-ethylhexyl) phthalate in soil. Chemosphere, 142, 24-27.
  • Hossain, M.K., Strezov, V., Chan, K.Y., Ziolkowski, A., & Nelson, F.P. (2011). Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92(1), 223-228.
  • Huang, Y., Tao, B., Lal, R., Lorenz, K., Jacinthe, P. A., Shrestha, R. K., ... & Ren, W. (2023). A global synthesis of biochar's sustainability in climate-smart agriculture-Evidence from field and laboratory experiments. Renewable and Sustainable Energy Reviews, 172, 113042.
  • Ibrahim, H.M., Al-Wabel, M.I., Usman, A.R., & Al-Omran, A. (2013). Effect of conocarpus biochar application on the hydraulic properties of a sandy loam soil. Soil Science, 178(4) 165-173.
  • Ippolito, J.A., Stromberger, M.E., Lentz, R.D., & Dungan, R.S. (2014). Hardwood biochar influences calcareous soil physicochemical and microbiological status. Journal of Enviromental Quality, 43, 681-689.
  • Ippolito, J.A., Ducey, T. F., Cantrell, K. B., Novak, J. M., & Lentz, R. D. (2016). Designer, acidic biochar influences calcareous soil characteristics. Chemosphere, 142, 184-191.
  • Jackson, M.L. (1958). Soil chemical analysis. New Jersey: Prentice-Hall Inc.
  • Joseph, S., Pow, D., Dawson, K.,Mitchell, D.R.G., Rawal, A., Hook, J., Taherymoosavi, S., Van Zwieten, L., Rust, J., Donne, S., Munroe, P., Pace, B., Graber, E., Thomas, T., Nielsen, S., Ye, J., Lin, Y., Pan, G.X., Li, L.Q., & Solaiman, Z.M. (2015).Feeding biochar to cows: An innovative solution for improving soil fertility and farm productivity. Pedosphere, 25, 666-679.
  • Kacar, B., & Inal, A. (2008). Plant analysis. Ankara: Nobel Press.
  • Kanthle, A. K., Lenka, N. K., Lenka, S., & Tedia, K. (2016). Biochar impact on nitrate leaching as influenced by native soil organic carbon in an inceptisol of central India. Soil and Tillage Research, 157, 65-72.
  • Kaya, E.C., Akça, H., Taşkın, M.B., Mounirou, M.M., & Kaya, T. (2019). Biyokömür ve fosfor uygulamalarının mısır ve çeltik bitkilerinin gelişimi ve mineral element konsantrasyonlarına etkileri. Toprak Su Dergisi, 8(1), 46-54.
  • Klute, A. (1986). Water retention: laboratory methods. Methods of soil analysis: part 1 physical and mineralogical methods, 5, 635-662.
  • Koçak, B., & Ortaş, İ. (2021). Short-term Eucalyptus and Phragmites biochar’s efficiency in mineralization of soil carbon. Journal of Soil Science and Plant Nutrition, 21(4), 3346-3345.
  • Korkmaz, H.E., Akgün, M., Çelebi, M.S., & Korkmaz, K. (2023). Fındık Zurufu ve Biyoçarından Üretilen Demir Nanopartiküllerinin (FeONP) Yaşlanmış Börülce Tohumlarında Çimlenme Üzerine Etkisi, Akademik Ziraat Dergisi, 12(Special Issue), 193-202.
  • Laird, D.A. (2008). The charcoal vision: A win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal, 100(1), 178-181.
  • Lehmann, J., Silva, J.P., Steiner, C., Nehls, T., Zech, W., & Glaser, B. (2003). Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil, 249- 343.
  • Lehmann, J., Gaunt, J., & Rondon, M. (2006). Biochar sequestration in terrestrial ecosystems A review. Mitigation and Adaptation Strategies for Global Change, 11(2), 403-427.
  • Lehmann, J. (2007a). Bio-energy in the black. Frontiers in Ecology and The Environments, 5, 381-387.
  • Lehmann, J. (2007b). A handful of carbon. Nature 447, 143-144.
  • Liu, Y.X., Yang, M., Wu, Y.M., Wang, H.L., Chen, Y.X., Wu, W.X., & Chen, Y. (2011). Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. Journal of Soils Sediments,11, 930-939.
  • Lorenz, K., & Lal, R. (2014). Biochar application to soil for climate change mitigation by soil organic carbon sequestration. Journal of Plant Nutrition and Soil Science, 177, 651-670.
  • Lue, K., Yang, X., Shen, J., Robinson, B., Huang, H., Liu, D., Bolan, N.S., Pei, J., & Wang, H. (2014). Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agriculture Ecosystems & Environment, 191, 124-132.
  • Manirakiza N., & Şeker, C. (2020). Effects of compost and biochar amendments on soil fertility and crop growth in a calcareous soil. Journal of Plant Nutrition, 43(20), 3002–3019.
  • Mathews, J.A. (2008). Viewpoint: Carbon-negative biofuels. Energy Policy, 36(3) 940-945.
  • Mukherjee, A., Lal, R., & Zimmerman, A.R. (2014). Impacts of biochar and other amendments on soil-carbon and nitrogen stability: A laboratory column study. Soil Science Society of American Journal, 78(4), 1258-1266.
  • Murphy, L., & Riley, J.P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36.
  • Namlı, A., Akça, O.M., & Akça, H. (2017). Tarımsal atıklardan elde edilen biyokömürün buğday bitkisinin gelişimi ve bazı toprak özellikleri üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 5(1), 39-47.
  • Ogawa, M., Okimori, Y., & Takahashi, F. (2006). Carbon sequestration by carbonization of biomass and forestation: Three case studies. Mitigation and Adaptation Strategies for Global Change, 11, 429-444.
  • Saygan, E.P., & Aydemir, S. (2016). Harran Ovası kireçli killi toprak özellikleri üzerine antepfıstığı dış kabuğu biyokömür uygulamasının etkisi. Harran Tarım ve Gıda Bilimleri Dergisi, 20(4), 301-312.
  • Schaefer, R. (1967). Characteres et evolution des activites microbiennes dans une chaine de sols hidromorphes mesotrophiques de la plaine d’Alsace, Revue d’Ecologie et de Biologie du Sol, 4, 567-592.
  • Shackley, S., Carter, S., Knowles, T., Middelink, E., Haefele, S., Sohi, S., & Haszeldine, S. (2012). Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context, chemical properties, environmental and health and safety issues. Energy Policy, 42, 49-58.
  • Sika, M.P., & Hardie, A.G. (2014). Effect of pine wood biochar on ammonium nitrate leaching and availability in A South African sandy soil. European Journal of Soil Science, 65(1), 113-119.
  • Skjemstad, J.O., Reicosky, D., Wilts, A.R., & McGowan, J.A. (2002). Charcoal carbon in agricultural soils. Soil Science Society of America Journal, 64(4), 1249-1255.
  • Sohi, S.P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105(1), 47-82.
  • Subedi, R., Taupe, N., Pelissetti, S., Petruzzelli, L., Bertora, C., Leahy, J.J., & Grignani, C. (2016). Greenhouse gas emissions and soil properties following amendment with manure derived biochars: Influence of pyrolysis temperature and feedstock type. Journal of Environmental Management, 166, 73-83.
  • Tepecik, M., Kayıkçıoğlu, H.H., & Kılıç, S. (2022). Farklı Piroliz Sıcaklıklarında Elde Edilen Biyokömürün Mısır Bitkisinin Bitki Besin Elementleri Üzerine Etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 59(1), 171-181.
  • Tsang, D.W., & Yip, A.K. (2014). Comparing chemical-enhanced washing and waste-based stabilisation approach for soil remediation. Journal of Soils and Sediments, 4, 936-947.
  • United States Salinity Laboratory Staff. (1954). Diagnosis and Improvement of, Saline and Alkaline Soils. L. A. Richards(Ed.). United States Department of Agriculture Handbook, 60, Washington: United State Government Printing Office.
  • Wang, J., Xiong, Z., & Kuzyakov, Y. (2016). Biochar stability in soil: Meta-analysis of decomposition and priming effects. Global Change Biology Bioenergy, 8(3), 512-523.
  • Winsley, P. (2007). Biyochar and bioenergy production for climate change mitigation. New Zealand Science Review, 64(1), 5-10.
  • Woolf, D., Amonette, J.E., Street-Perrott, F.A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1(56), 1-9.
  • Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., & Gao, B. (2013). Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research, 20(1), 358-368.
  • Yaman, E., Apaydın, E., Gültaş, H.E., & Özbay, N. (2019). Ceviz kabuğunun karbonizasyonu ile elde edilen katı ürününün toprak düzenleyici olarak kullanılması. Bilecik Şeyh Edepali Üniversitesi Fen Bilimleri Dergisi, 6, 106-116.
  • Yang, Y., Shaoqiang, M., Yi, Z., Ming, J., Yongqiang, X., & Jiawei, C. (2015). A field experiment on enhancement of crop yield by rice straw and maize stalk-derived biochar in Northern China. Sustainability, 7, 13713-13725.
  • Yang, Y., Sun, K., Han, L., Chen, Y., Liu, J., & Xing, B. (2022). Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, Aging and Soil Clay Content. Soil Biology and Biochemistry, 169.
  • Yılmaz, F.I., & Kurt, S. (2016). Biyokömür ve vermikompost uygulamalarının toprağın bazı biyolojik özellikleri üzerine etkisi. Toprak Bilimi ve Bitki Besleme Dergisi, 6(2),143-150.
  • Yip, K., Wu, H., & Zhang, D.K. (2007). Effect of inherent moisture in collie coal during pyrolysis due to in-situ steam gasification. Energy Fuels, 21, 2883-2891.
  • Yip, K., Fujun, T., Jun-chiro, H., & Hongwei, W. (2010). Effect of alkali and alkaline earth metallic species on biochar reactivity and syngas compositions during steam gasification. Energy Fuels, 24, 173-181.
  • Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., Bolan, N.S., Pei, J., & Huang, H. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science Pollution Research, 20, 8472-8483.
  • Zhang, X., He, L., Sarmah, A.K., Lin, K., Liu, Y., Li, J., & Wang, H. (2014). Retention and release of diethyl phthalate in biochar-amended vegetable garden soils. Journal of Soils and Sediments, 14, 1790-1799.
There are 80 citations in total.

Details

Primary Language Turkish
Subjects Soil Sciences and Ecology, Soil Biology
Journal Section Makaleler
Authors

Ahu Kutlay 0000-0001-5309-8759

Ahmet Demirbaş 0000-0003-2523-7322

Project Number KMYO-006 CÜBAP
Publication Date December 31, 2024
Submission Date August 13, 2024
Acceptance Date November 8, 2024
Published in Issue Year 2024 Volume: 13 Issue: 2

Cite

APA Kutlay, A., & Demirbaş, A. (2024). Farklı Sıcaklıkta Üretilen Biyokömür Uygulamasının Mısır Bitkisinin Verimi, Besin Elementi Alımı ve Karbon Mineralizasyonuna Etkisi. Akademik Ziraat Dergisi, 13(2), 376-390. https://doi.org/10.29278/azd.1532898