Research Article
BibTex RIS Cite

Hızlı Islah Sisteminin Optimizasyonu: İdeal Hasat Zamanı

Year 2024, Volume: 13 Issue: 2, 310 - 318, 31.12.2024
https://doi.org/10.29278/azd.1557055

Abstract

Amaç: Bu çalışmada hızlı ıslah koşullarında yetiştirilen bitkilerde çiçeklenmeden sonra 10 farklı hasat tarihi kullanılmış ve erken tohum hasadının toplam generasyon süresine etkisinin belirlenmesi amaçlanmıştır.
Materyal ve Yöntem: Araştırma, 2020 yılında yarı kontrollü sera ortamında gerçekleştirilmiş ve materyal olarak TBT16-9 makarnalık buğday genotipi kullanılmıştır. Tohumlar her gözde bir bitki olacak şekilde 28 gözlü fide viyollerine ekilmiştir. Her viyol 1 tekerrür olacak şekilde her bir hasat zamanı için çalışma 4 tekerrürlü olarak tesadüf parselleri deneme desenine göre kurulmuştur. Çalışmada toprak materyali olarak hazır torf kullanılmıştır. Araştırmada 22 saat ışık 2 saat karanlık olacak şekilde (gece ve gündüz sıcaklığı 17/22 °C) hızlı ıslah protokolü uygulanmış ve ardından çiçeklenmeden sonra 10 farklı tarihte hasat yapılmıştır. Hasat edilen bitkilerde bazı morfolojik özellikler incelenmiş ve elde edilen başaklar 35 °C’de 7 gün boyunca etüvde kurutulmaya bırakılmıştır. Ardından tohumlar 4 tekerrürlü olarak 24 °C’de 96 saat doğrudan çimlendirmeye alınmış ve çimlenme oranı (%) değerleri belirlenmiştir.
Araştırma Bulguları: Araştırmada incelenen morfolojik özelliklerin hasat tarihleri ile uyumlu bir artış veya azalış göstermediği belirlenmiştir. Buğday için uygulanan hızlı ıslah protokolü ile çiçeklenmeden 20 gün sonra (Ç-20) yapılan erken tohum hasadının başarılı çimlenme sonuçları (%61.07) gösterdiği ve bu metot ile hızlı ıslah koşullarında bir yılda yaklaşık 5 generasyon alınabileceği saptanmıştır.
Sonuç: Hızlı ıslah koşullarında hem bitkilerin uzun ışıklanma süresine tepkisinin bir sonucu olarak erken çiçeklenmenin hem de erken tohum hasadının generasyon süresini kısaltmada etkili olduğu belirlenmiştir.

References

  • Ahmar, S., Gill, R. A., Jung, K. H., Faheem, A., Qasim, M. U., Mubeen, M., & Zhou, W. (2020). Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. International Journal of Molecular Sciences, 21, 2590.
  • Alahmad, S., Dinglasan, E., Leung, K., Riaz, A., Derbal, N., Voss-Fels, K., Able, J., Bassi, F., Christopher, J., & Hickey, L. (2018). Speed breeding for multiple quantitative traits in durum wheat. Plant Methods, 14(1), 1-15.
  • Bayhan, M., Özkan, R., Yorulmaz, L., Albayrak, Ö., & Akıncı, C. (2022). Hızlı ıslah sisteminin optimizasyonu: bitki yetiştirme tekniklerinin etkileri. Anadolu Tarım Bilimleri Dergisi, 37(3), 541-556.
  • Bohra, A., Saxena, K., Varshney, R. K., & Saxena, R. K. (2020). Genomics-assisted breeding for pigeonpea improvement. Theoretical and Applied Genetics, 133(5), 1721-1737.
  • Cazzola, F., Bermejo, C. J., Gatti, I., & Cointry, E. (2020). Speed breeding in pulses: an opportunity to improve the efficiency of breeding programs. Crop Pasture Science, 72, 165-172.
  • Cha, J. K., Lee, J. H., Lee, S. M., Ko, J. M., & Shin, D. (2020). Heading date and growth character of korean wheat cultivars by controlling photoperiod for rapid generation advancement. Korean Journal of Breeding Science, 52, 20-24.
  • Chaudhary, N., & Sandhu, R. (2024). A comprehensive review on speedbreeding methods and applications. Euphytica, 220, 42.
  • Curtis, T., & Halford, N. (2014). Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann App Biol., 164, 354-72.
  • Edet, O. U., & Ishii, T. (2022). Cowpea speed breeding using regulated growth chamber conditions and seeds of oven-dried immature pods potentially accommodates eight generations per year. Plant Methods, 18, 106.
  • Erenstein, O., Jaleta, M., Mottaleb, K. A., Sonder, K., Donovan, J., & Braun, H. J. (2022) Global trends in wheat production, consumption and trade: Wheat improvement: food security in a changing climate. Cham: Springer International Publishing, 47-66.
  • Ferrie, A. M., & Polowick, P. L. (2020). Acceleration of the breeding program for winter wheat. In: Accelerated plant breeding. Springer, Berlin, 1, 191-215.
  • Ghosh, S., Watson, A., Gonzalez-Navarro, O., Ramirez-Gonzalez, R., Yanes, L., Mendoza-Suárez, M., Simmonds, J., Wells, R., Rayner, T., Green, P., Hafeez, A., Hayta, S., Melton, R., Steed, A., Sarkar, A., Carter, J., Perkins, L., Lord, J., Tester, M., & Hickey, L. (2018). Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols, 13(12), 2944-2963.
  • González-Barrios, P., Bhatta, M., Halley, M., Sandro, P., & Gutiérrez, L. (2021). Speed breeding and early panicle harvest accelerates oat (Avena sativa L.) breeding cycles. Crop Science, 61, 320-330.
  • Hickey, L. T., N Hafeez, A., Robinson, H., Jackson, S.A., Leal-Bertioli, S.C.M., Tester, M., Gao, C., Godwin, I.D., Hayes, B.J., & Wulff, B.B.H. (2019). Breeding crops to feed 10billion. Nature Biotechnology, 37(7), 744-754.
  • Idrissi, O. (2020). Application of extended photoperiod in lentil: Towardsaccelerated genetic gain in breeding for rapid improved variety development. Moroccan Journal of Agricultural Sciences, 1, 1.
  • Jähne, F., Hahn, V., Würschum, T., & Leiser, W.L. (2020). Speed breeding short-day crops by LED-controlled light schemes. Theoretical and Applied Genetics, 133, 2335-2342.
  • Kabade, P.G., Dixit, S., Singh, U.M., Alam, S., Bhosale, S., Kumar, S., Singh, S. K., Badri, J., Varma, N. R. G., Chetia, S., Singh, R., Pradhan, S. K., Banerjee, S., Deshmukh, R., Singh, S. P., Kalia, S., Sharma, T. R., Singh, S., Bhardwaj, H., Kohli, A., Kumar, A., Sinha, P., & Singh, V.K. (2023). Speed flower: a comprehensive speed breeding protocol for indica and japonica rice. Plant Biotechnology Journal, 22, 1051-1066.
  • Kiszonas, A. M., & Morris, C. F. (2018). Wheat breeding for quality: a historical review. Cereal Chemistry, 95, 17-34.
  • Lopes, M. S., El-Basyoni, I., Baenziger, P. S., Singh, S., Royo, C., Ozbek, K., Aktas, H., Ozer, E., Ozdemir, F., Manickavelu, A., Ban, T., & Vikram, P. (2015). Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. Journal of Experimental Botany, 66, 3477–3486.
  • Lulsdorf, M. M., & Banniza, S. (2018). Rapidgeneration cycling of an F2 population derived from a crossbetween Lens culinaris Medik. and Lens ervoides (Brign.) Grande after aphanomyces root rot selection. Plant Breeding, 137, 486-491.
  • Mobini, S. H., & Warkentin, T. D. (2016). A simple and efficient method of invivo rapid generation technology in pea (Pisum sativum L.). In Vitro Cellular & Developmental Biology–Plant, 52, 530-536.
  • Nagatoshi, Y., & Fujita, Y. (2019). Accelerating soybean breeding in a CO2-supplemented growth chamber. Plant Cell Physiol, 60(1), 77–84.
  • Özkan, R., Bayhan, M., Yıldırım, M., & Akıncı, C. (2022). Makarnalık buğdayda (Triticum durum L.) generasyon süresinin kısaltılmasında hızlı ıslah tekniğinin uygulanabilirliği. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26(2), 292-298.
  • Rezazadeh, A., Harkess, R. L., & Telmadarrehei, T. (2018). The effect of light intensity and temperature on flowering and morphology of potted red firespike. Horticulturae, 4(4), 36.
  • Samineni, S., Sen, M., Sajja, S. B., & Gaur, P. M. (2020). Rapid generation advance (RGA) in chickpea to produce up to seven generations per year andenable speed breeding. The Crop Journal, 8, 164-169.
  • Saxena, K., Saxena, R. K., & Varshney, R. K. (2017). Use of immature seed germination and single seed descent for rapid genetic gains in pigeonpea. Plant Breeding, 136(6), 954-957.
  • Sharma, S., Paul, P. J., Sameer Kumar, C., & Nimje, C. (2020). Utilizing wild Cajanus platycarpus, a tertiary genepool species for enriching variability in the primary genepool for pigeonpea improvement. Frontiers in Plant Science, 11, 1055.
  • Watson, A., Ghosh, S., Williams, M. J., Cuddy, W. S., Simmonds, J., Rey, M. D., Hatta, M. A., Hinchliffe, A., Steed, A., Reynolds, D. Adamski, N. M., Breakspear, A., Korolev, A., Rayner, T., Dixon, L. E., Riaz, A., Martin, W., Ryan, M., Edwards, D., Batley, J., Raman, H., Carter, J., Rogers, C., Domoney, C., Moore, G., Harwood, W., Nicholson, P., Dieters, M. J., DeLacy, I. H., Zhou, J., Uauy, C., Boden, S. A., Park, R. F., Wulff, B. B. H., & Hickey, L. T. (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 4, 23-29.

Optimisation of Speed Breeding System: Optimal Harvest Time

Year 2024, Volume: 13 Issue: 2, 310 - 318, 31.12.2024
https://doi.org/10.29278/azd.1557055

Abstract

Objective: In this study, 10 different harvest dates were used after flowering in plants grown under speed breeding conditions and it was aimed to determine the effect of early seed harvest on total generation time.
Materials and Methods: The research was carried out in 2020 in a semi-controlled greenhouse environment and TBT16-9 durum wheat genotype was used as material. Seeds were sown in 28-well seedling trays with one plant per tray. The study was established according to the randomised plots experimental design with 4 replicates for each harvest time, with 1 replicate in each tray. Peat was used as soil material in the study. In the study, a speed breeding protocol was applied with 22 hours of light and 2 hours of darkness (day and night temperature 17/22 °C) and then harvested on 10 different dates after flowering. Some morphological characteristics of the harvested plants were examined and the spikes obtained were dried in an oven at 35 °C for 7 days. Then, the seeds were directly germinated at 24 °C for 96 hours in 4 replicates and germination rate (%) values were determined.
Results: It was determined that the morphological traits examined in the study did not show an increase or decrease in accordance with the harvest dates. With the speed breeding protocol applied for wheat, it was determined that early seed harvesting 20 days after flowering (Ç-20) showed successful germination results (61.07%) and with this method, approximately 5 generations can be obtained in one year under speed breeding conditions.
Conclusion: As a result, it was determined that both early flowering as a result of the response of the plants to the long light period and early seed harvesting were effective in shortening the generation period under speed breeding conditions.

References

  • Ahmar, S., Gill, R. A., Jung, K. H., Faheem, A., Qasim, M. U., Mubeen, M., & Zhou, W. (2020). Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. International Journal of Molecular Sciences, 21, 2590.
  • Alahmad, S., Dinglasan, E., Leung, K., Riaz, A., Derbal, N., Voss-Fels, K., Able, J., Bassi, F., Christopher, J., & Hickey, L. (2018). Speed breeding for multiple quantitative traits in durum wheat. Plant Methods, 14(1), 1-15.
  • Bayhan, M., Özkan, R., Yorulmaz, L., Albayrak, Ö., & Akıncı, C. (2022). Hızlı ıslah sisteminin optimizasyonu: bitki yetiştirme tekniklerinin etkileri. Anadolu Tarım Bilimleri Dergisi, 37(3), 541-556.
  • Bohra, A., Saxena, K., Varshney, R. K., & Saxena, R. K. (2020). Genomics-assisted breeding for pigeonpea improvement. Theoretical and Applied Genetics, 133(5), 1721-1737.
  • Cazzola, F., Bermejo, C. J., Gatti, I., & Cointry, E. (2020). Speed breeding in pulses: an opportunity to improve the efficiency of breeding programs. Crop Pasture Science, 72, 165-172.
  • Cha, J. K., Lee, J. H., Lee, S. M., Ko, J. M., & Shin, D. (2020). Heading date and growth character of korean wheat cultivars by controlling photoperiod for rapid generation advancement. Korean Journal of Breeding Science, 52, 20-24.
  • Chaudhary, N., & Sandhu, R. (2024). A comprehensive review on speedbreeding methods and applications. Euphytica, 220, 42.
  • Curtis, T., & Halford, N. (2014). Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann App Biol., 164, 354-72.
  • Edet, O. U., & Ishii, T. (2022). Cowpea speed breeding using regulated growth chamber conditions and seeds of oven-dried immature pods potentially accommodates eight generations per year. Plant Methods, 18, 106.
  • Erenstein, O., Jaleta, M., Mottaleb, K. A., Sonder, K., Donovan, J., & Braun, H. J. (2022) Global trends in wheat production, consumption and trade: Wheat improvement: food security in a changing climate. Cham: Springer International Publishing, 47-66.
  • Ferrie, A. M., & Polowick, P. L. (2020). Acceleration of the breeding program for winter wheat. In: Accelerated plant breeding. Springer, Berlin, 1, 191-215.
  • Ghosh, S., Watson, A., Gonzalez-Navarro, O., Ramirez-Gonzalez, R., Yanes, L., Mendoza-Suárez, M., Simmonds, J., Wells, R., Rayner, T., Green, P., Hafeez, A., Hayta, S., Melton, R., Steed, A., Sarkar, A., Carter, J., Perkins, L., Lord, J., Tester, M., & Hickey, L. (2018). Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols, 13(12), 2944-2963.
  • González-Barrios, P., Bhatta, M., Halley, M., Sandro, P., & Gutiérrez, L. (2021). Speed breeding and early panicle harvest accelerates oat (Avena sativa L.) breeding cycles. Crop Science, 61, 320-330.
  • Hickey, L. T., N Hafeez, A., Robinson, H., Jackson, S.A., Leal-Bertioli, S.C.M., Tester, M., Gao, C., Godwin, I.D., Hayes, B.J., & Wulff, B.B.H. (2019). Breeding crops to feed 10billion. Nature Biotechnology, 37(7), 744-754.
  • Idrissi, O. (2020). Application of extended photoperiod in lentil: Towardsaccelerated genetic gain in breeding for rapid improved variety development. Moroccan Journal of Agricultural Sciences, 1, 1.
  • Jähne, F., Hahn, V., Würschum, T., & Leiser, W.L. (2020). Speed breeding short-day crops by LED-controlled light schemes. Theoretical and Applied Genetics, 133, 2335-2342.
  • Kabade, P.G., Dixit, S., Singh, U.M., Alam, S., Bhosale, S., Kumar, S., Singh, S. K., Badri, J., Varma, N. R. G., Chetia, S., Singh, R., Pradhan, S. K., Banerjee, S., Deshmukh, R., Singh, S. P., Kalia, S., Sharma, T. R., Singh, S., Bhardwaj, H., Kohli, A., Kumar, A., Sinha, P., & Singh, V.K. (2023). Speed flower: a comprehensive speed breeding protocol for indica and japonica rice. Plant Biotechnology Journal, 22, 1051-1066.
  • Kiszonas, A. M., & Morris, C. F. (2018). Wheat breeding for quality: a historical review. Cereal Chemistry, 95, 17-34.
  • Lopes, M. S., El-Basyoni, I., Baenziger, P. S., Singh, S., Royo, C., Ozbek, K., Aktas, H., Ozer, E., Ozdemir, F., Manickavelu, A., Ban, T., & Vikram, P. (2015). Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. Journal of Experimental Botany, 66, 3477–3486.
  • Lulsdorf, M. M., & Banniza, S. (2018). Rapidgeneration cycling of an F2 population derived from a crossbetween Lens culinaris Medik. and Lens ervoides (Brign.) Grande after aphanomyces root rot selection. Plant Breeding, 137, 486-491.
  • Mobini, S. H., & Warkentin, T. D. (2016). A simple and efficient method of invivo rapid generation technology in pea (Pisum sativum L.). In Vitro Cellular & Developmental Biology–Plant, 52, 530-536.
  • Nagatoshi, Y., & Fujita, Y. (2019). Accelerating soybean breeding in a CO2-supplemented growth chamber. Plant Cell Physiol, 60(1), 77–84.
  • Özkan, R., Bayhan, M., Yıldırım, M., & Akıncı, C. (2022). Makarnalık buğdayda (Triticum durum L.) generasyon süresinin kısaltılmasında hızlı ıslah tekniğinin uygulanabilirliği. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26(2), 292-298.
  • Rezazadeh, A., Harkess, R. L., & Telmadarrehei, T. (2018). The effect of light intensity and temperature on flowering and morphology of potted red firespike. Horticulturae, 4(4), 36.
  • Samineni, S., Sen, M., Sajja, S. B., & Gaur, P. M. (2020). Rapid generation advance (RGA) in chickpea to produce up to seven generations per year andenable speed breeding. The Crop Journal, 8, 164-169.
  • Saxena, K., Saxena, R. K., & Varshney, R. K. (2017). Use of immature seed germination and single seed descent for rapid genetic gains in pigeonpea. Plant Breeding, 136(6), 954-957.
  • Sharma, S., Paul, P. J., Sameer Kumar, C., & Nimje, C. (2020). Utilizing wild Cajanus platycarpus, a tertiary genepool species for enriching variability in the primary genepool for pigeonpea improvement. Frontiers in Plant Science, 11, 1055.
  • Watson, A., Ghosh, S., Williams, M. J., Cuddy, W. S., Simmonds, J., Rey, M. D., Hatta, M. A., Hinchliffe, A., Steed, A., Reynolds, D. Adamski, N. M., Breakspear, A., Korolev, A., Rayner, T., Dixon, L. E., Riaz, A., Martin, W., Ryan, M., Edwards, D., Batley, J., Raman, H., Carter, J., Rogers, C., Domoney, C., Moore, G., Harwood, W., Nicholson, P., Dieters, M. J., DeLacy, I. H., Zhou, J., Uauy, C., Boden, S. A., Park, R. F., Wulff, B. B. H., & Hickey, L. T. (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 4, 23-29.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Crop and Pasture Breeding
Journal Section Makaleler
Authors

Merve Bayhan 0000-0002-3220-4548

Remzi Özkan 0000-0002-6457-5802

Levent Yorulmaz 0000-0002-2880-1462

Cuma Akıncı 0000-0002-3514-1052

Publication Date December 31, 2024
Submission Date September 27, 2024
Acceptance Date December 10, 2024
Published in Issue Year 2024 Volume: 13 Issue: 2

Cite

APA Bayhan, M., Özkan, R., Yorulmaz, L., Akıncı, C. (2024). Hızlı Islah Sisteminin Optimizasyonu: İdeal Hasat Zamanı. Akademik Ziraat Dergisi, 13(2), 310-318. https://doi.org/10.29278/azd.1557055