Research Article
BibTex RIS Cite

Neoscytalidium dimidiatum’un sürdürülebilir kontrolünde tuz bazlı antifungal bileşiklerin in vitro değerlendirilmesi

Year 2024, Volume: 13 Issue: 2, 298 - 309, 31.12.2024
https://doi.org/10.29278/azd.1566942

Abstract

Amaç: Bu çalışmada, amonyum, borat, kalsiyum, magnezyum, potasyum ve sodyum bileşiklerini içeren çeşitli tuz gruplarının, Neoscytalidium dimidiatum’un iki izolatı (Ol_Dr04 ve Ciar 64) üzerindeki antifungal potansiyeli in vitro koşullarda değerlendirilmiştir. Farklı tuzların sabit ve ayarlanmış pH koşullarında miselyal gelişimi, arthrospor çimlenmesi ve çim tüpü uzamasını engelleyici etkileri analiz edilmiştir.
Materyal ve Yöntem: Çalışmada, öncelikle N. dimidiatum izolatlarının pH 2-12 aralığında miselyal gelişimi gözlemlenmiş ve optimum pH seviyeleri belirlenmiştir. Ardından, her iki izolat üzerinde amonyum, borat, kalsiyum, magnezyum, potasyum ve sodyum tuzlarının %1’lik konsantrasyonlarının sabit ve ayarlanmış pH (5) koşullarındaki antifungal etkinliği değerlendirilmiştir. Misel gelişiminde, arthrospor çimlenmesinde ve çim tüpü uzamasında %50 azalma sağlamak için gereken etkili tuz konsantrasyonları (EC50) probit analizi kullanılarak hesaplanmıştır. Ayrıca, minimum inhibisyon konsantrasyonu (MIC) ve minimum fungisidal konsantrasyon (MFC) değerleri de tespit edilmiştir.
Araştırma Bulguları: Sabit pH koşullarında, amonyum (bikarbonat ve karbonat), borat (susuz boraks, Etidot-67 ve sulu boraks) ve sodyum (benzoat, sitrat tetrahidrat ve metabisülfit) tuzlarının %1’lik konsantrasyonları, her iki fungus izolatının miselyal gelişimini tamamen engellemiştir. Ancak, ayarlanmış pH (5) koşullarında, bu etkili tuzlardan yalnızca sodyum benzoat ve sodyum metabisülfit aynı engelleyici etkiyi göstermiştir. Ayarlanmış pH koşullarında ayrıca kalsiyum oksit ve kalsiyum propiyonat da miselyal gelişimi tamamen durdurmuştur. Sodyum metabisülfit, son derece düşük EC50 (%0.016 ve 0.017; w/v), MIC (%0.0625 ve 0.0625; w/v) ve MFC (%0.0625 ve %0.0625; w/v) değerleri ile en etkili antifungal bileşik olarak öne çıkmıştır. Ayrıca, %0.03125’in altındaki EC50 değeriyle sodyum metabisülfit, arthrospor çimlenmesi ve çim tüpü uzama testlerinde de en güçlü inhibitör olmuştur.
Sonuç: Bu sonuçlar, sodyum metabisülfit, amonyum bikarbonat ve amonyum karbonat tuzlarının geleneksel fungisitlere çevre dostu alternatif olarak potansiyelini ortaya koymaktadır. Bu bulguları doğrulamak ve bitki hastalıklarının sürdürülebilir mücadelesinde pratik uygulamaların araştırılması için daha fazla in vivo çalışma yapılması önerilmektedir.

References

  • Alvindia, D., & Natsuaki, K. (2007). Control of crown rot-causing fungal pathogens of banana by inorganic salts and a surfactant. Crop Protection, 26, 1667–1673. https://doi.org/10.1016/J.CROPRO.2007.02.008
  • Baker, S. J., Zhang, Y. K., Akama, T., Lau, A., Zhou, H., Hernandez, V., & Plattner, J. J. (2006). Discovery of a new boron-containing antifungal agent, 5-fluoro-1, 3-dihydro-1-hydroxy-2, 1-benzoxaborole (AN2690), for the potential treatment of onychomycosis. Journal of Medicinal Chemistry, 49(15), 4447–4450. https://doi.org/10.1021/JM0603724
  • Bragard, C., Baptista, P., Chatzivassiliou, E., Di Serio, F., Gonthier, P., Jaques Miret, J. A., & Reignault, P. L. (2023). Pest categorisation of Neoscytalidium dimidiatum. EFSA Journal, 21(5), 1-56. https://doi.org/10.2903/j.efsa.2023.8001
  • Deliopoulos, T., Kettlewell, P. S., & Hare, M. C. (2010). Fungal disease suppression by inorganic salts: a review. Crop Protection, 29(10), 1059–1075. https://doi.org/10.1016/j.cropro.2010.05.011
  • Derviş, S., & Özer, G. (2023). Plant-associated Neoscytalidium dimidiatum Taxonomy, host range, epidemiology, virulence, and management strategies: A comprehensive review. Journal of Fungi, 9(11), 1048. https://doi.org/10.3390/jof9111048
  • Derviş, S., Türkölmez, Ş., Güney, İ.G., Alkan, M., & Özer, G. (2023). First report of needle blight of blue spruce (Picea pungens) caused by Neoscytalidium dimidiatum in Turkey. Journal of Plant Patholology 105, 1195–1196. https://doi.org/10.1007/s42161-023-01398-x
  • Derviş, S., Zholdoshbekova, S., Güney, İ. G., & Özer, G. (2024). Neoscytalidium dimidiatum: A newly identified postharvest pathogen of pears and its implications for pome fruits. Journal of Phytopathology, 172(3), e13322. https://doi.org/10.1111/jph.13322
  • Elsherbiny, A. E., & El-Khateeb, A. Y. (2012). Effect of organic and inorganic salts on mycelial growth, sporulation and spore germination of potato postharvest pathogens. Journal of Plant Protection and Pathology, 3(12), 1353–1364. https://doi.org/10.21608/jppp.2012.84421
  • Eraslan Sür, A and Oksal, E (2021). In vitro efficiency of some fungicides against Neoscytalidium dimidiatum (Penz.) Crous and Slippers causing sudden shoot dry on apricot trees. Turkish Journal of Agriculture - Food Science and Technology, 9, 797–802. https://doi.org/10.24925/turjaf.v9i4.797-802.4235
  • Erper, İ., Kalkan, Ç., Kaçar, G., & Türkkan, M. (2019). Antifungal effect of some boron salts against Penicillium expansum, the casual agent of blue mold of apple. Anadolu Journal of Agricultural Sciences, 34(3), 250–258.
  • Gusella, G., Fiore, G., Vitale, A., Felts, D. G., & Michailides, T. J. (2023). New findings on the effects of different factors involved in fig limb dieback caused by Neoscytalidium dimidiatum in California. European Journal of Plant Pathology, 167(1), 89–97. https://doi.org/10.1007/s10658-023-02685-0
  • Güney, İ. G., Özer, G., Türkölmez, Ş., & Derviş, S. (2022). Canker and leaf scorch on olive (Olea europaea L.) caused by Neoscytalidium dimidiatum in Turkey. Crop Protection, 157, 105985. https://doi.org/10. 1016/j.cropro.2022.105985
  • Güney, İ. G., Bozoğlu, T., Özer, G., & Derviş, S. (2023). A novel blight and root rot of chickpea: A new host for Neoscytalidium dimidiatum. Crop Protection, 172, 106326. https://doi.org/10.1016/j.cropro. 2023.106326
  • Hussien, A., Ahmed, Y., Al-Essawy, A. H., & Youssef, K. (2018). Evaluation of different salt-amended electrolysed water to control postharvest moulds of citrus. Tropical Plant Pathology, 43, 10–20. https://doi.org/10.1007/s40858-017-0179-8
  • Ippolito, A., Schena, L., Pentimone, I., & Nigro, F. (2004). Integrated control of sweet cherry postharvest rots by Aureobasidium pullulans in combination with calcium chloride or sodium bicarbonate. In V International Postharvest Symposium 682 (pp. 1985–1990).
  • Kara, M., Soylu, S., Gümüş, Y., Soylu, E. M., Uysal, A., & Kurt, Ş. (2023). Determination of the antifungal effect of boron, sodium and potassium salts against pomegranate fruit and crown rot disease agent Coniella granati. International Journal of Innovative Approaches in Agricultural Research, 7(4), 469–476. https://doi.org/10.29329/ijiaar.2023.630.8
  • Kolaei, E. A., Cenatus, C., Tweddell, R. J., & Avis, T. J. (2013). Antifungal activity of aluminium‐containing salts against the development of carrot cavity spot and potato dry rot. Annals of Applied Biology, 163(2), 311–317. https://doi.org/10.1111/aab.12056
  • Kuan, C. S., Ng, K. P., Yew, S. M., Umar Meleh, H., Seow, H. F., How, K. N., & Than, L. T. L. (2023). Comparative genomic and phenotypic analyses of pathogenic fungi Neoscytalidium dimidiatum and Bipolaris papendorfii isolated from human skin scraping. Brazilian journal of microbiology, 54(3), 1351–1372. https://doi.org/10.1007/s42770-023-01032-z
  • López-Moral, A., Agustí-Brisach, C., & Trapero, A. (2021). Plant biostimulants: New insights into the biological control of Verticillium wilt of olive. Frontiers in Plant Science, 12, 662178. https://doi.org/10.3389/fpls.2021.662178
  • Lyousfi, N., Legrifi, I., Ennahli, N., Blenzar, A., Amiri, S., Laasli, S. E., …& Lahlali, R. (2023). Evaluating food additives based on organic and inorganic salts as antifungal agents against Monilinia fructigena and maintaining postharvest quality of apple fruit. Journal of Fungi, 9(7), 762. https://doi.org/10.3390/jof9070762
  • Najarpour, H., Davarani, F. H., & Moradi, M. (2018). Efficacy of calcium salts on controlling Phytophthora pistaciae, the cause of pistachio (Pistacia vera L.) gummosis. Journal of Nuts, 9(2), 123–134. https://doi.org/10.22034/jon.2018.543141
  • Montecalvo, M. P., Mendoza, M. J. C., & Dalisay, T. U. (2023). Disease-reducing Effect of Calcium Salts Against Postharvest Diseases of Mango (Mangifera indica L. cv. Carabao) Fruits. The Philippine Agricultural Scientist, 106(3), 253–262.
  • Özer, G., Günen, T. U., Koşar, İ., Güney, İ. G., & Derviş, S. (2022). First report of Neoscytalidium dimidiatum causing blight of Melissa officinalis in Turkey. Journal of Plant Diseases and Protection, 129(1), 197–199. https://doi.org/10.1007/s41348-021-00522-2
  • Palou, L., Ali, A., Fallik, E., & Romanazzi, G. (2016). GRAS, plant-and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce. Postharvest Biology and Technology, 122, 41–52. https://doi.org/10.1016/j.postharvbio.2016.04.017
  • Riska, J., Budiyanti, T., Husada, E. D., Indriyani, N. L. P., Hadiati, S., Muas, I., and Mansyah, E. (2023). Stem canker of dragon fruit (Hylocereus polyrhizus): Neoscytalidium sp. is a pathogen of the disease and its control using sodium salt. Plant Protection Science, 59, 245–255. https://doi.org/10.17221/112/2022-PPS
  • Shi, X. Q., Li, B. Q., Qin, G. Z., & Tian, S. P. (2011). Antifungal activity and possible mode of action of borate against Colletotrichum gloeosporioides on mango. Plant disease, 95(1), 63–69. https://doi.org/10.1094/PDIS-06-10-0437
  • Silva, R. T., Guimarães, D. A., Camargo, Z. P., Rodrigues, A. M., Maceira, J. P., Bernardes-Engemann, A. R., & Orofino-Costa, R. (2016). Cutaneous murine model of infection caused by Neoscytalidium dimidiatum: a preliminary study of an emerging human pathogen. Medical Mycology, 54(8), 890–898. https://doi.org/10.1093/mmy/myw034
  • Türkkan, M. (2013). Antifungal effect of various salts against Fusarium oxysporum f. sp. cepae, the causal agent of Fusarium basal rot of onion. Journal of Agricultural Sciences, 19(3), 178–187. https://doi.org/10.1501/Tarimbil_0000001243
  • Türkkan, M., & Erper, I. (2014). Evaluation of antifungal activity of sodium salts against onion basal rot caused by Fusarium oxysporum f. sp. cepae. Plant Protection Science, 50(1), 19–25. https://doi.org/10.17221/9/2013-PPS
  • Türkkan, M. (2015). Evaluation of inhibitory effect of organic and inorganic salts against Ilyonectria liriodendri, the causal agent of root rot disease of kiwifruit. Journal of Phytopathology, 163(7-8), 567–577. https://doi.org/10.1111/jph.12355
  • Türkkan, M., & Erper, İ. (2015). Inhibitory influence of organic and inorganic sodium salts and synthetic fungicides against bean root rot pathogens. Gesunde Pflanzen, 67(2), 83–94. https://doi.org/10.1007/s10343-015-0339-z
  • Türkkan, M., Özcan, M., & Erper, İ. (2017). Antifungal effect of carbonate and bicarbonate salts against Botrytis cinerea, the causal agent of grey mould of kiwifruit. Akademik Ziraat Dergisi, 6(2), 107–114. https://doi.org/10.29278/azd.371066
  • Türkkan, M., Erper, İ., Eser, Ü., & Baltacı, A. (2018). Evaluation of inhibitory effect of some bicarbonate salts and fungicides against hazelnut powdery mildew. Gesunde Pflanzen, 70(1), 39–44. https://doi.org/10.1007/s10343-017-0411-y
  • Türkkan, M. (2019). Effect of various salts on the growth and development of Geotrichum candidum, the causal agent of carrot sour rot. Journal of Phytopathology, 167(4), 230-239. https://doi.org/10.1111/jph.12790
  • Türkölmez, Ş., Derviş, S., Çiftçi, O., & Dikilitas, M. (2019). First report of Neoscytalidium dimidiatum causing shoot and needle blight of pines (Pinus spp.) in Turkey. Plant Disease, 103(11), 2960–2961. https://doi.org/10.1094/PDIS-05-19-0964-PDN
  • Ünsal, İ., Kaş, S., & Türkkan, M. (2019). Effect of some calcium salts on the growth and development of Fusarium oxysporum f. sp. cepae, the causal agent of Fusarium basal rot of onion. Akademik Ziraat Dergisi, 8(1), 35–42. http://dx.doi.org/10.29278/azd.593349
  • Xian, X., Lin, S., Zhu, G., Wei, X., Qin, W., & Zhong, Y. (2018). Indoor virulence and field effects of fungicides on pitaya canker. Journal of Southern Agriculture, 49, 1338–1345. https://doi.org/10.3969/j.issn.2095-1191.2018.07.12
  • Xu, M., Peng, Y., Qi, Z., Yan, Z., Yang, L., He, M.D., Li, Q.X., Liu, C.L., Ruan, Y.Z., & Wei, S.S. (2018). Identification of Neoscytalidium dimidiatum causing canker disease of pitaya in Hainan, China. Australasian Plant Pathology, 47, 547–553. https://doi.org/10.1007/s13313-018-0588-2
  • Yıldırım, E., Karatoprak, K., Erper, İ., & Türkkan, M. (2020). Antifungal effect of boric acid against Penicillium expansum, the casual agent of blue mold of apple. Harran Tarım ve Gıda Bilimleri Dergisi, 24(1), 64–72. https://doi.org/10.29050/harranziraat.624445
  • Youssef, K., Ligorio, A., Sanzani, S., Nigro, F., & Ippolito, A. (2012). Control of storage diseases of citrus by pre- and postharvest application of salts. Postharvest Biology and Technology, 72, 57–63. https://doi.org/10.1016/J.POSTHARVBIO.2012.05.004
  • Zhang, W., Groenewald, J. Z., Lombard, L., Schumacher, R. K., Phillips, A. J. L., & Crous, P. W. (2021). Evaluating species in Botryosphaeriales. Persoonia, 46(1), 63–115. https://doi.org/10.3767/persoonia.2021.46.03

In vitro evaluation of salt-based antifungal compounds for sustainable control of Neoscytalidium dimidiatum

Year 2024, Volume: 13 Issue: 2, 298 - 309, 31.12.2024
https://doi.org/10.29278/azd.1566942

Abstract

Objective: This study evaluated the antifungal potential of various salts—specifically ammonium, borate, calcium, magnesium, potassium, and sodium compounds—against two isolates (Ol_Dr04 and Ciar 64) of Neoscytalidium dimidiatum under in vitro conditions. The goal was to assess the efficacy of these salts in inhibiting mycelial growth, arthrospore germination, and germ tube elongation under both fixed and adjusted pH conditions.
Materials and Methods: In this study, the mycelial growth of N. dimidiatum isolates was first observed across a pH range of 2 to 12 to determine the optimal pH levels. Subsequently, the antifungal efficacy of 1% concentrations of ammonium, borate, calcium, magnesium, potassium, and sodium salts was assessed under both fixed and adjusted pH (5) conditions for both isolates. Effective salt concentrations (EC50) needed to achieve a 50% reduction in mycelial growth, arthrospore germination, and germ tube elongation were calculated using probit analysis. Additionally, minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were determined for each salt under the tested conditions.
Results: Under fixed pH conditions, 1% concentrations of ammonium (bicarbonate and carbonate), borate (anhydrous borax, Etidot-67, and hydrated borax), and sodium (benzoate, citrate tetrahydrate, and metabisulfite) salts completely inhibited mycelial growth in both fungal isolates. However, under adjusted pH (5) conditions, only sodium benzoate and metabisulfite maintained the same inhibitory effect. At adjusted pH, calcium oxide and propionate also fully suppressed mycelial growth. Sodium metabisulfite emerged as the most effective antifungal compound, with remarkably low EC50 values (0.016 and 0.017%; w/v), MIC (0.0625 and 0.0625%; w/v), and MFC (0.0625% and 0.0625%; w/v) concentrations. Furthermore, with EC50 below 0.03125%, sodium metabisulfite remained the strongest inhibitor in both arthrospore germination and germ tube elongation assays.
Conclusion: These results highlight the potential of sodium metabisulfite, ammonium bicarbonate, and ammonium carbonate salts as environmentally friendly alternatives to conventional fungicides. Further in vivo studies are recommended to validate these findings and explore practical applications in sustainable plant disease management.

References

  • Alvindia, D., & Natsuaki, K. (2007). Control of crown rot-causing fungal pathogens of banana by inorganic salts and a surfactant. Crop Protection, 26, 1667–1673. https://doi.org/10.1016/J.CROPRO.2007.02.008
  • Baker, S. J., Zhang, Y. K., Akama, T., Lau, A., Zhou, H., Hernandez, V., & Plattner, J. J. (2006). Discovery of a new boron-containing antifungal agent, 5-fluoro-1, 3-dihydro-1-hydroxy-2, 1-benzoxaborole (AN2690), for the potential treatment of onychomycosis. Journal of Medicinal Chemistry, 49(15), 4447–4450. https://doi.org/10.1021/JM0603724
  • Bragard, C., Baptista, P., Chatzivassiliou, E., Di Serio, F., Gonthier, P., Jaques Miret, J. A., & Reignault, P. L. (2023). Pest categorisation of Neoscytalidium dimidiatum. EFSA Journal, 21(5), 1-56. https://doi.org/10.2903/j.efsa.2023.8001
  • Deliopoulos, T., Kettlewell, P. S., & Hare, M. C. (2010). Fungal disease suppression by inorganic salts: a review. Crop Protection, 29(10), 1059–1075. https://doi.org/10.1016/j.cropro.2010.05.011
  • Derviş, S., & Özer, G. (2023). Plant-associated Neoscytalidium dimidiatum Taxonomy, host range, epidemiology, virulence, and management strategies: A comprehensive review. Journal of Fungi, 9(11), 1048. https://doi.org/10.3390/jof9111048
  • Derviş, S., Türkölmez, Ş., Güney, İ.G., Alkan, M., & Özer, G. (2023). First report of needle blight of blue spruce (Picea pungens) caused by Neoscytalidium dimidiatum in Turkey. Journal of Plant Patholology 105, 1195–1196. https://doi.org/10.1007/s42161-023-01398-x
  • Derviş, S., Zholdoshbekova, S., Güney, İ. G., & Özer, G. (2024). Neoscytalidium dimidiatum: A newly identified postharvest pathogen of pears and its implications for pome fruits. Journal of Phytopathology, 172(3), e13322. https://doi.org/10.1111/jph.13322
  • Elsherbiny, A. E., & El-Khateeb, A. Y. (2012). Effect of organic and inorganic salts on mycelial growth, sporulation and spore germination of potato postharvest pathogens. Journal of Plant Protection and Pathology, 3(12), 1353–1364. https://doi.org/10.21608/jppp.2012.84421
  • Eraslan Sür, A and Oksal, E (2021). In vitro efficiency of some fungicides against Neoscytalidium dimidiatum (Penz.) Crous and Slippers causing sudden shoot dry on apricot trees. Turkish Journal of Agriculture - Food Science and Technology, 9, 797–802. https://doi.org/10.24925/turjaf.v9i4.797-802.4235
  • Erper, İ., Kalkan, Ç., Kaçar, G., & Türkkan, M. (2019). Antifungal effect of some boron salts against Penicillium expansum, the casual agent of blue mold of apple. Anadolu Journal of Agricultural Sciences, 34(3), 250–258.
  • Gusella, G., Fiore, G., Vitale, A., Felts, D. G., & Michailides, T. J. (2023). New findings on the effects of different factors involved in fig limb dieback caused by Neoscytalidium dimidiatum in California. European Journal of Plant Pathology, 167(1), 89–97. https://doi.org/10.1007/s10658-023-02685-0
  • Güney, İ. G., Özer, G., Türkölmez, Ş., & Derviş, S. (2022). Canker and leaf scorch on olive (Olea europaea L.) caused by Neoscytalidium dimidiatum in Turkey. Crop Protection, 157, 105985. https://doi.org/10. 1016/j.cropro.2022.105985
  • Güney, İ. G., Bozoğlu, T., Özer, G., & Derviş, S. (2023). A novel blight and root rot of chickpea: A new host for Neoscytalidium dimidiatum. Crop Protection, 172, 106326. https://doi.org/10.1016/j.cropro. 2023.106326
  • Hussien, A., Ahmed, Y., Al-Essawy, A. H., & Youssef, K. (2018). Evaluation of different salt-amended electrolysed water to control postharvest moulds of citrus. Tropical Plant Pathology, 43, 10–20. https://doi.org/10.1007/s40858-017-0179-8
  • Ippolito, A., Schena, L., Pentimone, I., & Nigro, F. (2004). Integrated control of sweet cherry postharvest rots by Aureobasidium pullulans in combination with calcium chloride or sodium bicarbonate. In V International Postharvest Symposium 682 (pp. 1985–1990).
  • Kara, M., Soylu, S., Gümüş, Y., Soylu, E. M., Uysal, A., & Kurt, Ş. (2023). Determination of the antifungal effect of boron, sodium and potassium salts against pomegranate fruit and crown rot disease agent Coniella granati. International Journal of Innovative Approaches in Agricultural Research, 7(4), 469–476. https://doi.org/10.29329/ijiaar.2023.630.8
  • Kolaei, E. A., Cenatus, C., Tweddell, R. J., & Avis, T. J. (2013). Antifungal activity of aluminium‐containing salts against the development of carrot cavity spot and potato dry rot. Annals of Applied Biology, 163(2), 311–317. https://doi.org/10.1111/aab.12056
  • Kuan, C. S., Ng, K. P., Yew, S. M., Umar Meleh, H., Seow, H. F., How, K. N., & Than, L. T. L. (2023). Comparative genomic and phenotypic analyses of pathogenic fungi Neoscytalidium dimidiatum and Bipolaris papendorfii isolated from human skin scraping. Brazilian journal of microbiology, 54(3), 1351–1372. https://doi.org/10.1007/s42770-023-01032-z
  • López-Moral, A., Agustí-Brisach, C., & Trapero, A. (2021). Plant biostimulants: New insights into the biological control of Verticillium wilt of olive. Frontiers in Plant Science, 12, 662178. https://doi.org/10.3389/fpls.2021.662178
  • Lyousfi, N., Legrifi, I., Ennahli, N., Blenzar, A., Amiri, S., Laasli, S. E., …& Lahlali, R. (2023). Evaluating food additives based on organic and inorganic salts as antifungal agents against Monilinia fructigena and maintaining postharvest quality of apple fruit. Journal of Fungi, 9(7), 762. https://doi.org/10.3390/jof9070762
  • Najarpour, H., Davarani, F. H., & Moradi, M. (2018). Efficacy of calcium salts on controlling Phytophthora pistaciae, the cause of pistachio (Pistacia vera L.) gummosis. Journal of Nuts, 9(2), 123–134. https://doi.org/10.22034/jon.2018.543141
  • Montecalvo, M. P., Mendoza, M. J. C., & Dalisay, T. U. (2023). Disease-reducing Effect of Calcium Salts Against Postharvest Diseases of Mango (Mangifera indica L. cv. Carabao) Fruits. The Philippine Agricultural Scientist, 106(3), 253–262.
  • Özer, G., Günen, T. U., Koşar, İ., Güney, İ. G., & Derviş, S. (2022). First report of Neoscytalidium dimidiatum causing blight of Melissa officinalis in Turkey. Journal of Plant Diseases and Protection, 129(1), 197–199. https://doi.org/10.1007/s41348-021-00522-2
  • Palou, L., Ali, A., Fallik, E., & Romanazzi, G. (2016). GRAS, plant-and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce. Postharvest Biology and Technology, 122, 41–52. https://doi.org/10.1016/j.postharvbio.2016.04.017
  • Riska, J., Budiyanti, T., Husada, E. D., Indriyani, N. L. P., Hadiati, S., Muas, I., and Mansyah, E. (2023). Stem canker of dragon fruit (Hylocereus polyrhizus): Neoscytalidium sp. is a pathogen of the disease and its control using sodium salt. Plant Protection Science, 59, 245–255. https://doi.org/10.17221/112/2022-PPS
  • Shi, X. Q., Li, B. Q., Qin, G. Z., & Tian, S. P. (2011). Antifungal activity and possible mode of action of borate against Colletotrichum gloeosporioides on mango. Plant disease, 95(1), 63–69. https://doi.org/10.1094/PDIS-06-10-0437
  • Silva, R. T., Guimarães, D. A., Camargo, Z. P., Rodrigues, A. M., Maceira, J. P., Bernardes-Engemann, A. R., & Orofino-Costa, R. (2016). Cutaneous murine model of infection caused by Neoscytalidium dimidiatum: a preliminary study of an emerging human pathogen. Medical Mycology, 54(8), 890–898. https://doi.org/10.1093/mmy/myw034
  • Türkkan, M. (2013). Antifungal effect of various salts against Fusarium oxysporum f. sp. cepae, the causal agent of Fusarium basal rot of onion. Journal of Agricultural Sciences, 19(3), 178–187. https://doi.org/10.1501/Tarimbil_0000001243
  • Türkkan, M., & Erper, I. (2014). Evaluation of antifungal activity of sodium salts against onion basal rot caused by Fusarium oxysporum f. sp. cepae. Plant Protection Science, 50(1), 19–25. https://doi.org/10.17221/9/2013-PPS
  • Türkkan, M. (2015). Evaluation of inhibitory effect of organic and inorganic salts against Ilyonectria liriodendri, the causal agent of root rot disease of kiwifruit. Journal of Phytopathology, 163(7-8), 567–577. https://doi.org/10.1111/jph.12355
  • Türkkan, M., & Erper, İ. (2015). Inhibitory influence of organic and inorganic sodium salts and synthetic fungicides against bean root rot pathogens. Gesunde Pflanzen, 67(2), 83–94. https://doi.org/10.1007/s10343-015-0339-z
  • Türkkan, M., Özcan, M., & Erper, İ. (2017). Antifungal effect of carbonate and bicarbonate salts against Botrytis cinerea, the causal agent of grey mould of kiwifruit. Akademik Ziraat Dergisi, 6(2), 107–114. https://doi.org/10.29278/azd.371066
  • Türkkan, M., Erper, İ., Eser, Ü., & Baltacı, A. (2018). Evaluation of inhibitory effect of some bicarbonate salts and fungicides against hazelnut powdery mildew. Gesunde Pflanzen, 70(1), 39–44. https://doi.org/10.1007/s10343-017-0411-y
  • Türkkan, M. (2019). Effect of various salts on the growth and development of Geotrichum candidum, the causal agent of carrot sour rot. Journal of Phytopathology, 167(4), 230-239. https://doi.org/10.1111/jph.12790
  • Türkölmez, Ş., Derviş, S., Çiftçi, O., & Dikilitas, M. (2019). First report of Neoscytalidium dimidiatum causing shoot and needle blight of pines (Pinus spp.) in Turkey. Plant Disease, 103(11), 2960–2961. https://doi.org/10.1094/PDIS-05-19-0964-PDN
  • Ünsal, İ., Kaş, S., & Türkkan, M. (2019). Effect of some calcium salts on the growth and development of Fusarium oxysporum f. sp. cepae, the causal agent of Fusarium basal rot of onion. Akademik Ziraat Dergisi, 8(1), 35–42. http://dx.doi.org/10.29278/azd.593349
  • Xian, X., Lin, S., Zhu, G., Wei, X., Qin, W., & Zhong, Y. (2018). Indoor virulence and field effects of fungicides on pitaya canker. Journal of Southern Agriculture, 49, 1338–1345. https://doi.org/10.3969/j.issn.2095-1191.2018.07.12
  • Xu, M., Peng, Y., Qi, Z., Yan, Z., Yang, L., He, M.D., Li, Q.X., Liu, C.L., Ruan, Y.Z., & Wei, S.S. (2018). Identification of Neoscytalidium dimidiatum causing canker disease of pitaya in Hainan, China. Australasian Plant Pathology, 47, 547–553. https://doi.org/10.1007/s13313-018-0588-2
  • Yıldırım, E., Karatoprak, K., Erper, İ., & Türkkan, M. (2020). Antifungal effect of boric acid against Penicillium expansum, the casual agent of blue mold of apple. Harran Tarım ve Gıda Bilimleri Dergisi, 24(1), 64–72. https://doi.org/10.29050/harranziraat.624445
  • Youssef, K., Ligorio, A., Sanzani, S., Nigro, F., & Ippolito, A. (2012). Control of storage diseases of citrus by pre- and postharvest application of salts. Postharvest Biology and Technology, 72, 57–63. https://doi.org/10.1016/J.POSTHARVBIO.2012.05.004
  • Zhang, W., Groenewald, J. Z., Lombard, L., Schumacher, R. K., Phillips, A. J. L., & Crous, P. W. (2021). Evaluating species in Botryosphaeriales. Persoonia, 46(1), 63–115. https://doi.org/10.3767/persoonia.2021.46.03
There are 41 citations in total.

Details

Primary Language English
Subjects Phytopathology
Journal Section Makaleler
Authors

Elif Yıldırım 0000-0002-4912-2303

Muharrem Türkkan 0000-0001-7779-9365

Sibel Derviş 0000-0002-4917-3813

Neşe Dalbastı 0000-0001-8441-3029

Göksel Özer 0000-0002-3385-2520

İsmail Erper 0000-0001-7952-8489

Publication Date December 31, 2024
Submission Date October 15, 2024
Acceptance Date November 22, 2024
Published in Issue Year 2024 Volume: 13 Issue: 2

Cite

APA Yıldırım, E., Türkkan, M., Derviş, S., Dalbastı, N., et al. (2024). In vitro evaluation of salt-based antifungal compounds for sustainable control of Neoscytalidium dimidiatum. Akademik Ziraat Dergisi, 13(2), 298-309. https://doi.org/10.29278/azd.1566942