Research Article
BibTex RIS Cite

Karadut Genotiplerinin (Morus nigra L.) Polen Performansı ve Morfolojisi

Year 2025, Volume: 14 Issue: 1, 39 - 47, 30.06.2025
https://doi.org/10.29278/azd.1512106

Abstract

Amaç: Bu araştırmada, tozlaşma ve döllenmede önemli rol oynayan karadut polenlerinin morfolojisi, canlılığı, çimlenme oranları ve üretim miktarının belirlenmesi amaçlanmıştır.
Materyal ve Yöntem: Bu araştırmada, karadut polenlerinin polen canlılığı TTC yöntemiyle, polen çimlenme testi “agar-plate” yöntemiyle, polen miktarı hemositometrik yöntemle, polen boyutları ve morfolojileri ışık mikroskobu ve taramalı elektron mikroskobu (SEM) kullanılarak incelenmiştir.
Araştırma Bulguları: Çalışmada iki farklı dioik erkek karadut genotipine ait polenlerin performansı ve morfolojik yapısı incelenmiştir (Genotip 5 ve Genotip 28). Bir anterde üretilen polen sayısının Genotip 28’de 51666, Genotip 5’te ise 54666 adet olduğu tespit edilmiştir. Genotip 28 ve Genotip 5’ten alınan polenlerin canlılık oranları sırasıyla %90.4 ve %89.2 bulunmuştur. Yapılan çimlenme testlerinde Genotip 28 polenlerinin %72.9, Genotip 5 polenlerinin ise %68.7 oranında çimlendiği gözlenmiştir. Polen şeklinin küresel, yüzey yapısında küçük kaba dikenli yapılarla birlikte düzensiz ağ şeklinde kıvrımların yer aldığı yer aldığı görülmüştür. Polar eksen uzunlukları Genotip 5 polenlerinde 22,08 µm, Genotip 28 polenlerinde 22,24 µm; ekvatoral eksen uzunlukları ise Genotip 5 polenlerinde 21,09 µm, Genotip 28 polenlerinde 21,32 µm olarak ölçülmüştür. Polen çimlenme açıklığının (apertür) polen yüzeyine eşit arlıklarla dağıldığı, sayılarının değişken olduğu ve açıklıkların porat (küresel) tipte oldukları saptanmıştır.
Sonuç: Mevcut bulgular, karadut genotiplerinin bol miktarda polen ürettiğini, üretilen polen tanelerinin yaklaşık %90'ının canlı olduğunu ve çimlenme oranının yüksek olduğunu ortaya koydu. Bu bulgular melezleme çalışmalarında polen performansı açısından bir sorunla karşılaşılmayacağını ortaya koymuştur.

References

  • Ahlawat, T. R., Patel, N. L., Agnihotri, R., Patel, C. R., & Tandel, Y. N. (2017). Black mulberry (Morus nigra). In Underutilized Fruit Crops: Importance and Cultivation (p. 1447). Jaya Publishing House.
  • Anşin, R., & Özkan, Z. C. (1993). Tohumlu Bitkiler (Spermotophyta), Odunsu Taksonlar. Karadeniz Teknik Üniversitesi, Orman Fakültesi, Trabzon.
  • Beyhan, N., & Serdar, Ü. (2009). In vitro pollen germination and tube growth of some European chestnut genotypes (Castanea sativa Mill.). Fruits, 64(3), 157–165. https://doi.org/10.1051/fruits/2009011
  • Datta, R. K. (2002). Mulberry Cultivation And Utilization in India. Central Sericultural Research & Training Institute, Central Silk Board, Srirampure, Mysore, India. https://doi.org/10.5555/20023117090
  • De Candolle, A. (1967). Origin of Cultivated Plants (pp. 149–153). New York and London.
  • Erdogan, U. (2015). Determination of Pollen Quality and Quantity in Mulberry (Morus alba L.). Pak. J. Bot., 47(1), 275–278.
  • Freeman, W. H. (1978). Temperate-Zone Pomology (p. 428). W. H. Freeman and Company, San Francisco. Gelorini, V., & Bourgeois, J. (2005). First discovery of black mulberry (Morus nigra L.) pollen in a late Bronze Age well at Sint-Gillis-Waas (Flanders, Belgium): Contamination or in situ deposition? Environmental Archaeology, 10(1), 89–93.
  • Gökmen, H. (1973). Angiosperms. Sark Printing Press, Ankara.
  • Huo, Y. J. (2002). Mulberry breeding. Sericulture Department, Zhejiang Agriculture University, Hangzhou, China.
  • İslam, A., Kurt, H., Turan, A., & Şişman, T. (2004). Şebinkarahisar’da yetiştirilen mahalli dut çeşitlerinin pomolojik özellikleri. Ulusal Kivi ve Üzümsü Meyveler Sempozyumu, 23-25 Ekim 2003, Ordu. 409-412.
  • İslam, A., Turan, A., Şişman, T., Kurt, H., & Aygün, A. (2006). Giresun Şebinkarahisar'da dut seleksiyonu. II. Ulusal Üzümsü Meyveler Sempozyumu (14-16 Eylül 2006, Tokat) Bildirileri, Nobel Akademik Yayıncılık.
  • Keskin, S., & Kaya, Ö. (2020). Erzincan İli Dutlarının Seleksiyon Yoluyla Islahı I. Ziraat Mühendisliği, (369), 108-121. Khalid, N., Fawad, S., & Ahmed, I. (2011). Medicinal plants: Conservation & sustainable use. Pak. J. Bot., 43(Special Issue), 91–96.
  • Khan, S. A., & Perveen, A. (2008). Germination capacity of stored pollen of Morus alba (Moraceae) and their maintenance. Pak. J. Bot., 40(5), 1823–1826.
  • Liu, P. G., Xu, Z. L., Zhu, Y., Lin, T. B., Lv, Z. Q., & Yang, S. (2022). Integrative analyses of transcriptomics and metabolomics in sex differentiation of mulberry flowers. Frontiers in Molecular Biosciences.
  • Martin, G., Reyes, F., Hernández, I., & Milera, M. (2002). Agronomic studies with mulberry in Cuba. In Mulberry for Animal Production. FAO Animal Production and Health Paper, 147, 103–114.
  • Mogili, T., Sarkar, T., & Gnanesh, B. N. (2023). Mulberry breeding for higher leaf productivity. In The Mulberry Genome. Springer.
  • Özgen, M., Serce, S., & Kaya, C. (2009). Phytochemical and antioxidant properties of anthocyanin-rich Morus nigra and Morus rubra fruits. Scientia Horticulturae, 119, 275–279.
  • Pandey, A. K. (2022). Reproductive Biology of Angiosperms. Taylor & Francis.
  • Polat, A. A. (2004). Hatay’ın Antakya ilçesinde yetiştirilen bazı dut tiplerinin meyve özelliklerinin belirlenmesi. Bahçe, 33(1), 67-73.
  • Punt, W., & Malotaux, M. (1984). Cannabaceae, Moraceae and Urticaceae. Review of Palaeobotany and Palynology, 42, 23–44.
  • Subba, R. C., & Reddi, N. S. (1986). Pollen production in some anemophilous angiosperms. Grana, 25(1), 55–61.
  • Tikader, A., & Dandin, S. B. (2007). Pre-breeding efforts to utilize two wild Morus species. Current Science, 92, 1072–1076.
  • Tojyo, I. (1966). Studies on the polyploid mulberry trees IV. On the flower and pollen grains of one race of Morus nigra L. Journal of Sericultural Science of Japan, 35, 360–364.
  • Wani, I. A., Bhat, M. Y., & Lone, A. A. (2010). Unfruitfulness in fruit crops: Causes and remedies. African Journal of Agricultural Research.
  • Yılmaz, K. U., Zengin, Y., Ercisli, S., Demirtas, M. N., Kan, T., & Nazlı, A. R. (2012). Morphological diversity on fruit characteristics among some selected mulberry genotypes from Turkey. The Journal of Animal & Plant Sciences, 22(1), 211–214.
  • Zhang, Y., Chengfu, L., Jinmei, Z., Hongzi, Z., Xiaoming, X. (1998). Polymorphism studies on genomic DNA of diploids and polyploids in mulberry. Journal of Zhejiang Agricultural University, 24, 79–81.
  • Zhenjiang, W., Guoqing, L., Fanwei, D., Hao, Y., Gengsheng, X., & Cuiming, T. (2015). Pollen morphology of Morus atropurpurea with different ploidies. Scientia Silvae Sinicae, 51(4), 71–77. https://doi.org/10.11707/j.1001-7488

Pollen Performance and Morphology of Black Mulberry (Morus nigra L.) Genotypes

Year 2025, Volume: 14 Issue: 1, 39 - 47, 30.06.2025
https://doi.org/10.29278/azd.1512106

Abstract

Objective: It was aimed to determine the morphology, viability, germination rates, and production quantity of black mulberry (Morus nigra L.) pollens, which play an important role in pollination and fertilization.
Materials and Methods: In this research, pollen viability of black mulberry pollens using the TTC method, pollen germination test using the “agar–plate” method, pollen quantity using the Hemocytometric method, pollen sizes and morphologies using light microscope and scanning electron microscope (SEM) were examined.
Results: In this study, pollen performance and morphological structures of two different dioic male black mulberry genotypes (Genotype 28 and Genotype 5) were investigated. Number of pollen grains per anther was determined as 51666 in Genotype 28 and 54666 in Genotype 5. Pollen viability ratios were 90.4% in Genotype 28 and 89.2% in Genotype 5. Pollen germination ratios of Genotype 28 and Genotype 5 were 68.7% and 72.9% respectively. Pollen shape was spherical and surface ornamentation consisted of small coarse spiny structures and irregular reticulate folds. Polar axis length was measured as 22.08 µm in Genotype 5 and 22.24 µm in Genotype 28. Equatorial axis length was measured as 21.09 µm in Genotype 5 and 21.32 µm in Genotype 28. Pollen germination apertures were evenly distributed on pollen surface, number of apertures varied and apertures were porate (spherical) type.
Conclusion: Present findings revealed that black mulberry genotypes produced plenty of pollen grains, about 90% of produced pollen grains were viable and had a high germination ratio. Such findings indicated that a problem will not be encountered in terms of pollen performance in hybridization studies.

References

  • Ahlawat, T. R., Patel, N. L., Agnihotri, R., Patel, C. R., & Tandel, Y. N. (2017). Black mulberry (Morus nigra). In Underutilized Fruit Crops: Importance and Cultivation (p. 1447). Jaya Publishing House.
  • Anşin, R., & Özkan, Z. C. (1993). Tohumlu Bitkiler (Spermotophyta), Odunsu Taksonlar. Karadeniz Teknik Üniversitesi, Orman Fakültesi, Trabzon.
  • Beyhan, N., & Serdar, Ü. (2009). In vitro pollen germination and tube growth of some European chestnut genotypes (Castanea sativa Mill.). Fruits, 64(3), 157–165. https://doi.org/10.1051/fruits/2009011
  • Datta, R. K. (2002). Mulberry Cultivation And Utilization in India. Central Sericultural Research & Training Institute, Central Silk Board, Srirampure, Mysore, India. https://doi.org/10.5555/20023117090
  • De Candolle, A. (1967). Origin of Cultivated Plants (pp. 149–153). New York and London.
  • Erdogan, U. (2015). Determination of Pollen Quality and Quantity in Mulberry (Morus alba L.). Pak. J. Bot., 47(1), 275–278.
  • Freeman, W. H. (1978). Temperate-Zone Pomology (p. 428). W. H. Freeman and Company, San Francisco. Gelorini, V., & Bourgeois, J. (2005). First discovery of black mulberry (Morus nigra L.) pollen in a late Bronze Age well at Sint-Gillis-Waas (Flanders, Belgium): Contamination or in situ deposition? Environmental Archaeology, 10(1), 89–93.
  • Gökmen, H. (1973). Angiosperms. Sark Printing Press, Ankara.
  • Huo, Y. J. (2002). Mulberry breeding. Sericulture Department, Zhejiang Agriculture University, Hangzhou, China.
  • İslam, A., Kurt, H., Turan, A., & Şişman, T. (2004). Şebinkarahisar’da yetiştirilen mahalli dut çeşitlerinin pomolojik özellikleri. Ulusal Kivi ve Üzümsü Meyveler Sempozyumu, 23-25 Ekim 2003, Ordu. 409-412.
  • İslam, A., Turan, A., Şişman, T., Kurt, H., & Aygün, A. (2006). Giresun Şebinkarahisar'da dut seleksiyonu. II. Ulusal Üzümsü Meyveler Sempozyumu (14-16 Eylül 2006, Tokat) Bildirileri, Nobel Akademik Yayıncılık.
  • Keskin, S., & Kaya, Ö. (2020). Erzincan İli Dutlarının Seleksiyon Yoluyla Islahı I. Ziraat Mühendisliği, (369), 108-121. Khalid, N., Fawad, S., & Ahmed, I. (2011). Medicinal plants: Conservation & sustainable use. Pak. J. Bot., 43(Special Issue), 91–96.
  • Khan, S. A., & Perveen, A. (2008). Germination capacity of stored pollen of Morus alba (Moraceae) and their maintenance. Pak. J. Bot., 40(5), 1823–1826.
  • Liu, P. G., Xu, Z. L., Zhu, Y., Lin, T. B., Lv, Z. Q., & Yang, S. (2022). Integrative analyses of transcriptomics and metabolomics in sex differentiation of mulberry flowers. Frontiers in Molecular Biosciences.
  • Martin, G., Reyes, F., Hernández, I., & Milera, M. (2002). Agronomic studies with mulberry in Cuba. In Mulberry for Animal Production. FAO Animal Production and Health Paper, 147, 103–114.
  • Mogili, T., Sarkar, T., & Gnanesh, B. N. (2023). Mulberry breeding for higher leaf productivity. In The Mulberry Genome. Springer.
  • Özgen, M., Serce, S., & Kaya, C. (2009). Phytochemical and antioxidant properties of anthocyanin-rich Morus nigra and Morus rubra fruits. Scientia Horticulturae, 119, 275–279.
  • Pandey, A. K. (2022). Reproductive Biology of Angiosperms. Taylor & Francis.
  • Polat, A. A. (2004). Hatay’ın Antakya ilçesinde yetiştirilen bazı dut tiplerinin meyve özelliklerinin belirlenmesi. Bahçe, 33(1), 67-73.
  • Punt, W., & Malotaux, M. (1984). Cannabaceae, Moraceae and Urticaceae. Review of Palaeobotany and Palynology, 42, 23–44.
  • Subba, R. C., & Reddi, N. S. (1986). Pollen production in some anemophilous angiosperms. Grana, 25(1), 55–61.
  • Tikader, A., & Dandin, S. B. (2007). Pre-breeding efforts to utilize two wild Morus species. Current Science, 92, 1072–1076.
  • Tojyo, I. (1966). Studies on the polyploid mulberry trees IV. On the flower and pollen grains of one race of Morus nigra L. Journal of Sericultural Science of Japan, 35, 360–364.
  • Wani, I. A., Bhat, M. Y., & Lone, A. A. (2010). Unfruitfulness in fruit crops: Causes and remedies. African Journal of Agricultural Research.
  • Yılmaz, K. U., Zengin, Y., Ercisli, S., Demirtas, M. N., Kan, T., & Nazlı, A. R. (2012). Morphological diversity on fruit characteristics among some selected mulberry genotypes from Turkey. The Journal of Animal & Plant Sciences, 22(1), 211–214.
  • Zhang, Y., Chengfu, L., Jinmei, Z., Hongzi, Z., Xiaoming, X. (1998). Polymorphism studies on genomic DNA of diploids and polyploids in mulberry. Journal of Zhejiang Agricultural University, 24, 79–81.
  • Zhenjiang, W., Guoqing, L., Fanwei, D., Hao, Y., Gengsheng, X., & Cuiming, T. (2015). Pollen morphology of Morus atropurpurea with different ploidies. Scientia Silvae Sinicae, 51(4), 71–77. https://doi.org/10.11707/j.1001-7488
There are 27 citations in total.

Details

Primary Language English
Subjects Pomology and Treatment
Journal Section Makaleler
Authors

Mehmet Akif Demirel 0000-0003-0131-0185

Kenan Yıldız 0000-0003-3455-5146

Cevriye Mert 0000-0003-3092-5023

Publication Date June 30, 2025
Submission Date July 8, 2024
Acceptance Date January 29, 2025
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Demirel, M. A., Yıldız, K., & Mert, C. (2025). Pollen Performance and Morphology of Black Mulberry (Morus nigra L.) Genotypes. Akademik Ziraat Dergisi, 14(1), 39-47. https://doi.org/10.29278/azd.1512106