Research Article
BibTex RIS Cite
Year 2019, , 366 - 372, 30.10.2019
https://doi.org/10.17694/bajece.633908

Abstract

References

  • [1] R. S. Popović, Hall effect devices, 2nd ed. Philadelphia : Institute of Physics Pub., 2004.[2] G. Boero, M. Demierre, P. A. Besse, and R. S. Popovic, “Micro-Hall devices: Performance, technologies and applications,” Sensors Actuators, A Phys., vol. 106, no. 1–3, pp. 314–320, 2003.[3] E. Ramsden, Hall-Effect Sensors, 2nd ed. Elsevier, 2006.[4] H. Xu et al., “Batch-fabricated high-performance graphene Hall elements,” Sci. Rep., vol. 3, p. 1207, 2013.[5] D. Izci, C. Dale, N. Keegan, and J. Hedley, “The Construction of a Graphene Hall Effect Magnetometer,” IEEE Sens. J., vol. 18, no. 23, pp. 9534–9541, Dec. 2018.[6] S. Johnstone, “Is there potential for use of the Hall effect in analytical science?,” Analyst, vol. 133, no. 3, pp. 293–296, 2008.[7] K. Skucha, P. Liu, M. Megens, J. Kim, and B. Boser, “A compact Hall-effect sensor array for the detection and imaging of single magnetic beads in biomedical assays,” 16th Int. Solid-State Sensors, Actuators Microsystems Conf. TRANSDUCERS’11, pp. 1833–1836, 2011.[8] T. Ishikawa, “Immunoassay on silicon chip,” 2014 29th Symp. Microelectron. Technol. Devices Chip Aracaju, SBMicro 2014, 2014.[9] P. Manandhar et al., “The detection of specific biomolecular interactions with micro-Hall magnetic sensors,” Nanotechnology, vol. 20, no. 35, p. 355501, 2009.[10] A. Sandhu and H. Handa, “Practical hall sensors for biomedical instrumentation,” IEEE Trans. Magn., vol. 41, no. 10, pp. 4123–4127, 2005.[11] K. Togawa et al., “High sensitivity InSb hall effect biosensor platform for DNA detection and biomolecular recognition using functionalized magnetic nanobeads,” Japanese J. Appl. Physics, Part 2 Lett., vol. 44, no. 46–49, pp. L1494–L1497, 2005.[12] D. Issadore, H. J. Chung, J. Chung, G. Budin, R. Weissleder, and H. Lee, “μHall chip for sensitive detection of bacteria,” Adv. Healthc. Mater., vol. 2, no. 9, pp. 1224–1228, 2013.[13] D. Issadore et al., “Magnetic sensing technology for molecular analyses,” Lab Chip, vol. 14, no. 14, pp. 2385–2397, 2014.[14] T. Takamura, P. J. Ko, J. Sharma, R. Yukino, S. Ishizawa, and A. Sandhu, “Magnetic-particle-sensing based diagnostic protocols and applications,” Sensors (Switzerland), vol. 15, no. 6, pp. 12983–12998, 2015.[15] T. A. P. Rocha-Santos, “Sensors and biosensors based on magnetic nanoparticles,” TrAC - Trends Anal. Chem., vol. 62, pp. 28–36, 2014.[16] J. Wang, A. N. Kawde, A. Erdem, and M. Salazar, “Magnetic bead-based label-free electrochemical detection of DNA hybridization,” Analyst, vol. 126, no. 11, pp. 2020–2024, 2001.[17] A. Manzin and V. Nabaei, “Modelling of micro-Hall sensors for magnetization imaging,” J. Appl. Phys., vol. 115, no. 17, 2014.[18] M. A. Paun, J. M. Sallese, and M. Kayal, “Hall effect sensors design, integration and behavior analysis,” J. Sens. Actuator Networks, vol. 2, no. 1, pp. 85–97, 2013.[19] S. Sanfilippo, “Hall probes: Physics and application to magnetometry,” in CAS 2009 - CERN Accelerator School: Magnets, Proceedings, 2010, pp. 423–462.[20] R. Steiner, C. Maier, A. Hàberli, F. P. Steiner, and H. Baltes, “Offset reduction in Hall devices by continuous spinning current method,” Sensors Actuators, A Phys., vol. 66, no. 1–3, pp. 167–172, 1998.[21] X. Chen, Y. Xu, X. Xie, Y. Guo, and Y. Huang, “A novel Hall dynamic offset cancellation circuit based on four-phase spinning current technique,” China Semicond. Technol. Int. Conf. 2015, CSTIC 2015, pp. 1–3, 2015.

Constructing an Electronic Circuitry for Label-free Hall Biosensors

Year 2019, , 366 - 372, 30.10.2019
https://doi.org/10.17694/bajece.633908

Abstract

Magnetic field has a
huge potential of providing non-destructive and highly efficient detection
platforms in biosensing field. It provides a low intrinsic background in
biological systems since those systems have no comparable biological signal.
Hall devices are currently dominating the market of the magnetic sensors due to
several advantages such as allowing miniaturization, being compatible with
electronics integration, cheaper fabrication and room temperature operation
with high linearity. It is important to construct a suitable front-end
circuitry in order to be able to achieve a portable and label-free working Hall
biosensor. This paper presents the construction of an electronic circuitry that
is required for actuating Hall based biosensors and obtaining the output since
there are undesired effects which are causing less sensitive or less accurate
results. The paper takes a closer look at those effects and presents the
solution to the problem by introducing a developed circuitry on a designed
printed circuit board along with the promising results it has achieved.

References

  • [1] R. S. Popović, Hall effect devices, 2nd ed. Philadelphia : Institute of Physics Pub., 2004.[2] G. Boero, M. Demierre, P. A. Besse, and R. S. Popovic, “Micro-Hall devices: Performance, technologies and applications,” Sensors Actuators, A Phys., vol. 106, no. 1–3, pp. 314–320, 2003.[3] E. Ramsden, Hall-Effect Sensors, 2nd ed. Elsevier, 2006.[4] H. Xu et al., “Batch-fabricated high-performance graphene Hall elements,” Sci. Rep., vol. 3, p. 1207, 2013.[5] D. Izci, C. Dale, N. Keegan, and J. Hedley, “The Construction of a Graphene Hall Effect Magnetometer,” IEEE Sens. J., vol. 18, no. 23, pp. 9534–9541, Dec. 2018.[6] S. Johnstone, “Is there potential for use of the Hall effect in analytical science?,” Analyst, vol. 133, no. 3, pp. 293–296, 2008.[7] K. Skucha, P. Liu, M. Megens, J. Kim, and B. Boser, “A compact Hall-effect sensor array for the detection and imaging of single magnetic beads in biomedical assays,” 16th Int. Solid-State Sensors, Actuators Microsystems Conf. TRANSDUCERS’11, pp. 1833–1836, 2011.[8] T. Ishikawa, “Immunoassay on silicon chip,” 2014 29th Symp. Microelectron. Technol. Devices Chip Aracaju, SBMicro 2014, 2014.[9] P. Manandhar et al., “The detection of specific biomolecular interactions with micro-Hall magnetic sensors,” Nanotechnology, vol. 20, no. 35, p. 355501, 2009.[10] A. Sandhu and H. Handa, “Practical hall sensors for biomedical instrumentation,” IEEE Trans. Magn., vol. 41, no. 10, pp. 4123–4127, 2005.[11] K. Togawa et al., “High sensitivity InSb hall effect biosensor platform for DNA detection and biomolecular recognition using functionalized magnetic nanobeads,” Japanese J. Appl. Physics, Part 2 Lett., vol. 44, no. 46–49, pp. L1494–L1497, 2005.[12] D. Issadore, H. J. Chung, J. Chung, G. Budin, R. Weissleder, and H. Lee, “μHall chip for sensitive detection of bacteria,” Adv. Healthc. Mater., vol. 2, no. 9, pp. 1224–1228, 2013.[13] D. Issadore et al., “Magnetic sensing technology for molecular analyses,” Lab Chip, vol. 14, no. 14, pp. 2385–2397, 2014.[14] T. Takamura, P. J. Ko, J. Sharma, R. Yukino, S. Ishizawa, and A. Sandhu, “Magnetic-particle-sensing based diagnostic protocols and applications,” Sensors (Switzerland), vol. 15, no. 6, pp. 12983–12998, 2015.[15] T. A. P. Rocha-Santos, “Sensors and biosensors based on magnetic nanoparticles,” TrAC - Trends Anal. Chem., vol. 62, pp. 28–36, 2014.[16] J. Wang, A. N. Kawde, A. Erdem, and M. Salazar, “Magnetic bead-based label-free electrochemical detection of DNA hybridization,” Analyst, vol. 126, no. 11, pp. 2020–2024, 2001.[17] A. Manzin and V. Nabaei, “Modelling of micro-Hall sensors for magnetization imaging,” J. Appl. Phys., vol. 115, no. 17, 2014.[18] M. A. Paun, J. M. Sallese, and M. Kayal, “Hall effect sensors design, integration and behavior analysis,” J. Sens. Actuator Networks, vol. 2, no. 1, pp. 85–97, 2013.[19] S. Sanfilippo, “Hall probes: Physics and application to magnetometry,” in CAS 2009 - CERN Accelerator School: Magnets, Proceedings, 2010, pp. 423–462.[20] R. Steiner, C. Maier, A. Hàberli, F. P. Steiner, and H. Baltes, “Offset reduction in Hall devices by continuous spinning current method,” Sensors Actuators, A Phys., vol. 66, no. 1–3, pp. 167–172, 1998.[21] X. Chen, Y. Xu, X. Xie, Y. Guo, and Y. Huang, “A novel Hall dynamic offset cancellation circuit based on four-phase spinning current technique,” China Semicond. Technol. Int. Conf. 2015, CSTIC 2015, pp. 1–3, 2015.
There are 1 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Araştırma Articlessi
Authors

Davut İzci 0000-0001-8359-0875

Publication Date October 30, 2019
Published in Issue Year 2019

Cite

APA İzci, D. (2019). Constructing an Electronic Circuitry for Label-free Hall Biosensors. Balkan Journal of Electrical and Computer Engineering, 7(4), 366-372. https://doi.org/10.17694/bajece.633908

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı