Research Article
BibTex RIS Cite

Fault Detection from Horizontal Shaft Centrifugal Pump Fan Sound Analysis Using Artificial Intelligence

Year 2024, Volume: 12 Issue: 4, 320 - 329, 07.01.2025
https://doi.org/10.17694/bajece.1500321

Abstract

Axial misalignment, over-forced and wear of the components that constitute the machine is changed in the sound. It is of critical importance to implement early fault diagnosis and predictive maintenance planning in order to prevent errors caused by machines that break down or fail during operation. In this study, data comprising 15 one-dimensional sequences and 15 two-dimensional images from MFCCs (Mel-Frequency Cepstral Coefficients) for each sound were utilized in CNN (Convolutional Neural Networks). Furthermore, the data used in ML (Machine Learning) models were created by extracting 28 features from various audio characteristics such as amplitude-time, mel-spectrogram, MFCCs, ZCRs (Zero Crossing Rates), and RMS (Root Mean Square) energy. SVM (Support Vector Machine), KNN (K-Nearest Neighbours) and EL (Ensemble Learning), which combines SVM, KNN and RF (Random Forest) models, were utilized. The results indicated that the accuracy rates varied between 76.21% and 99.59%. The EL model exhibited the highest accuracy, correctly predicting all 99 sounds for faulty, 248 sounds out of 249 sounds for slightly faulty and 143 sounds out of 144 sounds for intact. The results indicate that it is possible to diagnose faults in centrifugal pumps and preventing errors. Consequently, economic savings will be achieved by reducing the losses caused by faulty parts and energy loss caused by the decrease in the efficiency of the system when it operates incorrectly will be prevented.

Thanks

IIC2024(Uluslararası Bilişim Kongresi-2024) kongresinde bu dergide yayınlanmak üzere bildirimizi seçtiklerinden dolayı teşekkür ederiz.

References

  • [1] N. R. Sakthivel, V. Sugumaran andS. Babudevasenapati, “Vibration based fault diagnosis of monoblock centrifugal pump using decision tree”, Expert Systems with Applications, vol. 37(6), pp. 4040-4049, 2010. https://doi.org/10.1016/j.eswa.2009.10.002
  • [2] Y. Zhang, S. Hu, Y. Zhang, and L. Chen, Optimization and Analysis of Centrifugal Pump considering Fluid‐Structure Interaction. The scientific world journal, 2014(1), 131802, 2014. https://doi.org/10.1155/2014/131802
  • [3] J. Singh, and A. W. Review on fluid forces and their action on centrifugal pump impeller. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-21, 2024. https://doi.org/10.1007/s12008-024-02109-1
  • [4] C. S. Kallesoe, V. Cocquempot, and R. Izadi-Zamanabadi, Model based fault detection in a centrifugal pump application. IEEE transactions on control systems technology, 14(2), 204-215, 2006. 10.1109/TCST.2005.860524
  • [5] H. K. Sakran, M. S. Abdul Aziz, M. Z. Abdullah, and C. Y. Khor, Effects of blade number on the centrifugal pump performance: a review. Arabian Journal for Science and Engineering, 47(7), 7945-7961, 2022. https://doi.org/10.1007/s13369-021-06545-z
  • [6] M. Vila-Forteza, A. Jimenez-Cortadi, A. Diez-Olivan, D. Seneviratne and D. Galar-Pascual, “Advanced Prognostics for a Centrifugal Fan and Multistage Centrifugal Pump Using a Hybrid Model”, In International Conference on Maintenance, Condition Monitoring and Diagnostics (pp. 153-165), Singapore, Springer Nature Singapore, 2021. https://doi.org/10.1007/978-981-99-1988-8_12
  • [7] M. Tan, Y. Lu, X. Wu, H. Liu, and X. Tian, Investigation on performance of a centrifugal pump with multi-malfunction. Journal of Low Frequency Noise, Vibration and Active Control, 40(2), 740-752, 2021. https://doi.org/10.1177/1461348420942349
  • [8] A. Kumar and R. Kumar, “Time-frequency analysis and support vector machine in automatic detection of defect from vibration signal of centrifugal pump”, Measurement, 108, 119-133, 2017. https://doi.org/10.1016/j.measurement.2017.04.041
  • [9] K. McKee, G. Forbes, M. I. Mazhar, R. Entwistle and I. Howard, “A review of major centrifugal pump failure modes with application to the water supply and sewerage industries”, In ICOMS Asset Management Conference Proceedings, Asset Management Council, 2011. http://hdl.handle.net/20.500.11937/28560
  • [10] D. Mourtzis J. Angelopoulos and N. Panopoulos, “Intelligent predictive maintenance and remote monitoring framework for industrial equipment based on mixed reality”, Frontiers in Mechanical Engineering, 6, 578379, 2020. https://doi.org/10.3389/fmech.2020.578379
  • [11] H. Ersoy and L. Özdemır, “Iklimlendirme Sistemlerine Ait Performans Tespitlerinin Akustik Analizlere Göre Yapilmasi”, Engineer & the Machinery Magazine, 52(623), 50-59, 2011. f3806045ee01987_ek.pdf
  • [12] R. S. Peres, A. D. Rocha, P. Leitao, and J. Barata, IDARTS–Towards intelligent data analysis and real-time supervision for industry 4.0. Computers in industry, 101, 138-146, 2018. https://doi.org/10.1016/j.compind.2018.07.004
  • [13] E. Sezer, D.Romero, F. Guedea, M. Macchi, and C. Emmanouilidis, An industry 4.0-enabled low cost predictive maintenance approach for smes. In 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), 1-8, 2018, IEEE. 10.1109/ICE.2018.8436307
  • [14] T. P. Carvalho, F. A. Soares, R. Vita, R. D. P. Francisco, J. P. Basto and S. G. Alcalá, “A systematic literature review of ML methods applied to predictive maintenance”, Computers & Industrial Engineering, 137, 106024, 2019.https://doi.org/10.1016/j.cie.2019.106024
  • [15] Z. Fan, X. Xu, R. Wang and H. Wang, Fan fault diagnosis based on lightweight multiscale multiattention feature fusion network. IEEE Transactions on Industrial Informatics, 18(7), 4542-4554, 2021. 10.1109/TII.2021.3121294
  • [16] C. S. A. Gong, H. C. Lee, Y. C. Chuang, T. H. Li, C. H. S. Su, L. H. Huang, C. H. Chang, “Design and implementation of acoustic sensing system for online early fault detection in industrial fans”, Journal of Sensors, 2018. DOI: https://doi.org/10.1155/2018/4105208
  • [17] E. Güler, A. G.M. T. Kakız, F. B Gunay, B. Şanal, T. Çavdar, “Kapalı Mekân Ortamında 1D-CNN Kullanarak Yapılan Doluluk Tespiti Sınıflandırması”, Karadeniz Fen Bilimleri Dergisi, 13(1), 60-71, 2023. https://doi.org/10.31466/kfbd.1162332
  • [18] V. TATAR, “Su pompa istasyonunda kestirimci bakım ve yönetim organizasyonu”, PhD Thesis, (Order No. 29171313). Sakarya Universitesi, Applied Science Institute, Sakarya, 2010. https://www.proquest.com/dissertations-theses/su-pompa-istasyonunda-kestirimci-bakım-ve-yönetim/docview/2689284998/se-2
  • [19] A. Kumar, P. Sathujoda and N. A. Bhalla, “Vibration signal analysis of a rotor-bearing system through wavelet transform and empirical mode decomposition”, In IOP Conference Series: Materials Science and Engineering, 1248(1), 012027, IOP Publishing, 2022. 10.1088/1757-899X/1248/1/012027/meta
  • [20] M. Romanssini, P. C. C. de Aguirre, L. Compassi-Severo and A. G. Girardi, “A review on vibration monitoring techniques for predictive maintenance of rotating machinery”, Eng, 4(3), 1797-1817, 2023. https://doi.org/10.3390/eng4030102
  • [21] M. Chen, U. Challita, W. Saad, C. Yin and M. Debbah M, “Artificial neural networks-based ML for wireless networks: A tutorial”, IEEE Communications Surveys & Tutorials, vol. 21(4), pp. 3039-3071, 2019. 10.1109/COMST.2019.2926625
  • [22] P. Probst, M. N. Wright and A. L. Boulesteix, “Hyperparameters and tuning strategies for random forest”, Wiley Interdisciplinary Reviews: data mining and knowledge discovery, vol. 9(3), pp. 1301, 2019. 10.1002/widm.1301
  • [23] K. V. Rani and S. J. Jawhar, “Lung lesion classification scheme using optimization techniques and hybrid (knn-svm) classifier”, IETE Journal of Research, 68 (2),1485-1499, 2022. https://doi.org/10.1080/03772063.2019.1654935
  • [24] O. O. Abayomi-Alli, R. Damaševičius, A. Qazi, M. Adedoyin-Olowe and S. Misra, “Data augmentation and deep learning methods in sound classification: A systematic review”. Electronics, 11(22), 3795, 2022.https://doi.org/10.3390/electronics11223795
  • [25] S. L. Ullo, S. K. Khare, V. Bajaj and G.R. Sinha, “Hybrid computerized method for environmental sound classification”, IEEE Access, 8, 124055-124065, 2020. 10.1109/ACCESS.2020.3006082
  • [26] J. Xie, K. Hu, M. Zhu, J. Yu and Q. Zhu, “Investigation of different CNN-based models for improved bird sound classification”, IEEE Access, vol. 7,pp. 175353-175361, 2019. 10.1109/ACCESS.2019.2957572
  • [27] W. K. Mutlag, S. K. Ali, Z. M. Aydam and B. H. Taher, “Feature extraction methods: a review”, In Journal of Physics: Conference Series, vol. 1591(1), pp. 012028, IOP Publishing, 2020. 10.1088/1742-6596/1591/1/012028/meta
  • [28] A. O. Salau and S. Jain, “Feature extraction: a survey of the types, techniques, applications”, In 2019 international conference on signal processing and communication (ICSC), pp. 158-164, IEEE, 2019.10.1109/ICSC45622.2019.8938371
  • [29] G. Sharma, K. Umapathy and S. Krishnan, “Trends in audio signal feature extraction methods”, Applied Acoustics, vol. 158, pp. 107020, 2020.https://doi.org/10.1016/j.apacoust.2019.107020
  • [30] S. Singh, S. Potala and A. R. Mohanty, “An improved method of detecting engine misfire by sound quality metrics of radiated sound”, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(12), 3112-3124, 2019. https://doi.org/10.1177/0954407018818693
  • [31] E. Germen, M. Başaran and M. Fidan, “Sound based induction motor fault diagnosis using Kohonen self-organizing map”, Mechanical Systems and Signal Processing, vol. 46(1), pp. 45-58, 2014. https://doi.org/10.1016/j.ymssp.2013.12.002
  • [32] A. Abayomi-Alli, O. Abayomi-Alli, J. Vipperman, M. Odusami and S. Misra,“Multi-class classification of impulse and non-impulse sounds using deep convolutional neural network (DCNN)”,In Computational Science and Its Applications–ICCSA 2019: 19th International Conference, Saint Petersburg, Russia, Proceedings, Part V 19, 359-371, Springer International Publishing, 2019. https://doi.org/10.1007/978-3-030-24308-1_30
  • [33] J. Kim and J. Lee, “Statistical classification of vehicle interior sound through up sampling-based augmentation and correction using 1D CNN and LSTM”. IEEE Access, 10, 100615-100626, 2022. 10.1109/ACCESS.2022.3208148
  • [34] C. Honggang, X. Mingyue, F. Chenzhao, S. Renjie and L. Zhe, “Mechanical fault diagnosis of GIS based on MFCCs of sound signals”, In 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE), 1487-1491, IEEE, 2020. 10.1109/ACPEE48638.2020.9136284
  • [35] J. Jakubowski and J. Jackowski, “Recognition of moving tracked and wheeled vehicles based on sound analysis and machine learning algorithms”, International Journal of Automotive and Mechanical Engineering, 18(1), 8478-8488, 2021. https://doi.org/10.15282/ijame.18.1.2021.07.0642
  • [36] E. Babaee, N. B. Anuar, A. W. Abdul Wahab, S. Shamshirband and A. T. Chronopoulos, “An overview of audio event detection methods from feature extraction to classification”, Applied Artificial Intelligence, 31(9-10), 661-714, 2017. https://doi.org/10.1080/08839514.2018.1430469
  • [37] P. Kathirvel, M. S. Manikandan, S. Senthilkumar and K. P. Soman, Noise robust zerocrossing rate computation for audio signal classification. In 3rd International Conference on Trendz in Information Sciences & Computing (TISC2011), 65-69, 2011, IEEE. 10.1109/TISC.2011.6169086
  • [38] A. Prashanth, S. L. Jayalakshmi and R. Vedhapriyavadhana, “A review of deep learning techniques in audio event recognition (AER) applications”. Multimedia Tools and Applications, 83(3), 8129-8143, 2024. https://doi.org/10.1007/s11042-023-15891-z
  • [39] B. Underwood and R. Tashakkori, “Detecting anomalies in honey bee hives using their audio recordings”, In SoutheastCon, 173-177, IEEE, 2022.10.1109/SoutheastCon48659.2022.9763931
  • [40] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj and D. J. Inman, “1D convolutional neural networks and applications: A survey”, Mechanical systems and signal processing, 151, 107398, 2021. https://doi.org/10.1016/j.ymssp.2020.107398
  • [41] S. Sharma and S. Sen, “One-dimensional convolutional neural network-based damage detection in structural joints”. Journal of Civil Structural Health Monitoring, 10(5), 1057-1072, 2020. https://doi.org/10.1007/s13349-020-00434-z
  • [42] H. Perez, J. H. Tah and A. Mosavi, “Deep learning for detecting building defects using convolutional neural networks”, Sensors, 19(16), 3556, 2019. https://doi.org/10.3390/s19163556
  • [43] X. Yang, Y. Ye, X. Li, R. Y. Lau, X. Zhang and X. Huang, “Hyperspectral image classification with deep learning models”. IEEE Transactions on Geoscience and Remote Sensing, 56(9), 5408-5423, 2018. 10.1109/TGRS.2018.2815613
  • [44] G. Guo, H. Wang, D. Bell, Y. Bi and K. Greer, “KNN model-based approach in classification”. In On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Proceedings, 986-996, Springer Berlin Heidelberg, 2003. https://doi.org/10.1007/978-3-540-39964-3_62
  • [45] L. Xiong and Y. Yao, “Study on an adaptive thermal comfort model with K-nearest-neighbors (KNN) algorithm”, Building and Environment, 202, 108026, 2021. https://doi.org/10.1016/j.buildenv.2021.108026
  • [46] S. Jueyendah, M. Lezgy-Nazargah, H. Eskandari-Naddaf and S. A. Emamian, “Predicting the mechanical properties of cement mortar using the support vector machine approach”, Construction and Building Materials, 291, 123396, 2021. https://doi.org/10.1016/j.conbuildmat.2021.123396
  • [47] M. A. Chandra and S. S. Bedi, Survey on SVM and their application in image classification. International Journal of Information Technology, 13(5), 1-11, 2021
  • [48] ***, Heterogeneous Ensemble Learning (Hard voting/Soft voting), https://www.datajango.com/heterogeneous-ensemble-learning-hard-voting-soft-voting/
  • [49] O. Sagi and L. Rokach, “Ensemble Learning: A survey”. Wiley interdisciplinary reviews: data mining and knowledge discovery, 8(4), 1249, 2018. https://doi.org/10.1002/widm.1249
  • [50] A. M. Ibrahim, M. Alfonse and M. Aref, “A SYSTEMATIC REVIEW ON TEXT SUMMARIZATION OF MEDICAL RESEARCH ARTICLES”, International Journal of Intelligent Computing and Information Sciences, 23(2), 50-61, 2023. 10.21608/ijicis.2023.190004.1252
  • [51] L. Dong, Z. Chen, R. Hua, S. Hu and C. Fan, “Research on diagnosis method of centrifugal pump rotor faults based on IPSO-VMD and RVM”, Nuclear Engineering and Technology, 55(3), 827-838, 2023. https://doi.org/10.1016/j.net.2022.10.045
  • [52] X. Xiao, H. Chen, L. Dong, H. Liu, and C. Fan, “Research on Common Fault Diagnosis and Classification Method of Centrifugal Pump Based on ReliefF and SVM”, International Journal of Fluid Machinery and Systems, 15(2), 287-296, 2022. 10.5293/ijfms.2022.15.2.287
  • [53] N. S. Ranawat, P. K. Kankar and A. Miglani, “Fault diagnosis in centrifugal pump using support vector machine and artificial neural network”, J. Eng. Res. EMSME Spec., 99, 111, 2020. https://doi.org/10.36909/jer.EMSME.13881
  • [54] A. R. Al-Obaidi, “Experimental diagnostic of cavitation flow in the centrifugal pump under various impeller speeds based on acoustic analysis method”, Archives of Acoustics, 48(2), 159-170, 2023. 10.24425/aoa.2023.145234
  • [55] E. Ebrahimi and M. Javidan, “Vibration-based classification of centrifugal pumps using support vector machine and discrete wavelet transform”, Journal of Vibroengineering, 19(4), 2586-2597, 2017. https://doi.org/10.21595/jve.2017.18120
  • [56] M. Karagiovanidis, X. E. Pantazi, D. Papamichail and V. Fragos, “Early detection of cavitation in centrifugal pumps using low-cost vibration and sound sensors”, Agriculture, 13(8), 1544, 2023. https://doi.org/10.3390/agriculture13081544
Year 2024, Volume: 12 Issue: 4, 320 - 329, 07.01.2025
https://doi.org/10.17694/bajece.1500321

Abstract

References

  • [1] N. R. Sakthivel, V. Sugumaran andS. Babudevasenapati, “Vibration based fault diagnosis of monoblock centrifugal pump using decision tree”, Expert Systems with Applications, vol. 37(6), pp. 4040-4049, 2010. https://doi.org/10.1016/j.eswa.2009.10.002
  • [2] Y. Zhang, S. Hu, Y. Zhang, and L. Chen, Optimization and Analysis of Centrifugal Pump considering Fluid‐Structure Interaction. The scientific world journal, 2014(1), 131802, 2014. https://doi.org/10.1155/2014/131802
  • [3] J. Singh, and A. W. Review on fluid forces and their action on centrifugal pump impeller. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-21, 2024. https://doi.org/10.1007/s12008-024-02109-1
  • [4] C. S. Kallesoe, V. Cocquempot, and R. Izadi-Zamanabadi, Model based fault detection in a centrifugal pump application. IEEE transactions on control systems technology, 14(2), 204-215, 2006. 10.1109/TCST.2005.860524
  • [5] H. K. Sakran, M. S. Abdul Aziz, M. Z. Abdullah, and C. Y. Khor, Effects of blade number on the centrifugal pump performance: a review. Arabian Journal for Science and Engineering, 47(7), 7945-7961, 2022. https://doi.org/10.1007/s13369-021-06545-z
  • [6] M. Vila-Forteza, A. Jimenez-Cortadi, A. Diez-Olivan, D. Seneviratne and D. Galar-Pascual, “Advanced Prognostics for a Centrifugal Fan and Multistage Centrifugal Pump Using a Hybrid Model”, In International Conference on Maintenance, Condition Monitoring and Diagnostics (pp. 153-165), Singapore, Springer Nature Singapore, 2021. https://doi.org/10.1007/978-981-99-1988-8_12
  • [7] M. Tan, Y. Lu, X. Wu, H. Liu, and X. Tian, Investigation on performance of a centrifugal pump with multi-malfunction. Journal of Low Frequency Noise, Vibration and Active Control, 40(2), 740-752, 2021. https://doi.org/10.1177/1461348420942349
  • [8] A. Kumar and R. Kumar, “Time-frequency analysis and support vector machine in automatic detection of defect from vibration signal of centrifugal pump”, Measurement, 108, 119-133, 2017. https://doi.org/10.1016/j.measurement.2017.04.041
  • [9] K. McKee, G. Forbes, M. I. Mazhar, R. Entwistle and I. Howard, “A review of major centrifugal pump failure modes with application to the water supply and sewerage industries”, In ICOMS Asset Management Conference Proceedings, Asset Management Council, 2011. http://hdl.handle.net/20.500.11937/28560
  • [10] D. Mourtzis J. Angelopoulos and N. Panopoulos, “Intelligent predictive maintenance and remote monitoring framework for industrial equipment based on mixed reality”, Frontiers in Mechanical Engineering, 6, 578379, 2020. https://doi.org/10.3389/fmech.2020.578379
  • [11] H. Ersoy and L. Özdemır, “Iklimlendirme Sistemlerine Ait Performans Tespitlerinin Akustik Analizlere Göre Yapilmasi”, Engineer & the Machinery Magazine, 52(623), 50-59, 2011. f3806045ee01987_ek.pdf
  • [12] R. S. Peres, A. D. Rocha, P. Leitao, and J. Barata, IDARTS–Towards intelligent data analysis and real-time supervision for industry 4.0. Computers in industry, 101, 138-146, 2018. https://doi.org/10.1016/j.compind.2018.07.004
  • [13] E. Sezer, D.Romero, F. Guedea, M. Macchi, and C. Emmanouilidis, An industry 4.0-enabled low cost predictive maintenance approach for smes. In 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), 1-8, 2018, IEEE. 10.1109/ICE.2018.8436307
  • [14] T. P. Carvalho, F. A. Soares, R. Vita, R. D. P. Francisco, J. P. Basto and S. G. Alcalá, “A systematic literature review of ML methods applied to predictive maintenance”, Computers & Industrial Engineering, 137, 106024, 2019.https://doi.org/10.1016/j.cie.2019.106024
  • [15] Z. Fan, X. Xu, R. Wang and H. Wang, Fan fault diagnosis based on lightweight multiscale multiattention feature fusion network. IEEE Transactions on Industrial Informatics, 18(7), 4542-4554, 2021. 10.1109/TII.2021.3121294
  • [16] C. S. A. Gong, H. C. Lee, Y. C. Chuang, T. H. Li, C. H. S. Su, L. H. Huang, C. H. Chang, “Design and implementation of acoustic sensing system for online early fault detection in industrial fans”, Journal of Sensors, 2018. DOI: https://doi.org/10.1155/2018/4105208
  • [17] E. Güler, A. G.M. T. Kakız, F. B Gunay, B. Şanal, T. Çavdar, “Kapalı Mekân Ortamında 1D-CNN Kullanarak Yapılan Doluluk Tespiti Sınıflandırması”, Karadeniz Fen Bilimleri Dergisi, 13(1), 60-71, 2023. https://doi.org/10.31466/kfbd.1162332
  • [18] V. TATAR, “Su pompa istasyonunda kestirimci bakım ve yönetim organizasyonu”, PhD Thesis, (Order No. 29171313). Sakarya Universitesi, Applied Science Institute, Sakarya, 2010. https://www.proquest.com/dissertations-theses/su-pompa-istasyonunda-kestirimci-bakım-ve-yönetim/docview/2689284998/se-2
  • [19] A. Kumar, P. Sathujoda and N. A. Bhalla, “Vibration signal analysis of a rotor-bearing system through wavelet transform and empirical mode decomposition”, In IOP Conference Series: Materials Science and Engineering, 1248(1), 012027, IOP Publishing, 2022. 10.1088/1757-899X/1248/1/012027/meta
  • [20] M. Romanssini, P. C. C. de Aguirre, L. Compassi-Severo and A. G. Girardi, “A review on vibration monitoring techniques for predictive maintenance of rotating machinery”, Eng, 4(3), 1797-1817, 2023. https://doi.org/10.3390/eng4030102
  • [21] M. Chen, U. Challita, W. Saad, C. Yin and M. Debbah M, “Artificial neural networks-based ML for wireless networks: A tutorial”, IEEE Communications Surveys & Tutorials, vol. 21(4), pp. 3039-3071, 2019. 10.1109/COMST.2019.2926625
  • [22] P. Probst, M. N. Wright and A. L. Boulesteix, “Hyperparameters and tuning strategies for random forest”, Wiley Interdisciplinary Reviews: data mining and knowledge discovery, vol. 9(3), pp. 1301, 2019. 10.1002/widm.1301
  • [23] K. V. Rani and S. J. Jawhar, “Lung lesion classification scheme using optimization techniques and hybrid (knn-svm) classifier”, IETE Journal of Research, 68 (2),1485-1499, 2022. https://doi.org/10.1080/03772063.2019.1654935
  • [24] O. O. Abayomi-Alli, R. Damaševičius, A. Qazi, M. Adedoyin-Olowe and S. Misra, “Data augmentation and deep learning methods in sound classification: A systematic review”. Electronics, 11(22), 3795, 2022.https://doi.org/10.3390/electronics11223795
  • [25] S. L. Ullo, S. K. Khare, V. Bajaj and G.R. Sinha, “Hybrid computerized method for environmental sound classification”, IEEE Access, 8, 124055-124065, 2020. 10.1109/ACCESS.2020.3006082
  • [26] J. Xie, K. Hu, M. Zhu, J. Yu and Q. Zhu, “Investigation of different CNN-based models for improved bird sound classification”, IEEE Access, vol. 7,pp. 175353-175361, 2019. 10.1109/ACCESS.2019.2957572
  • [27] W. K. Mutlag, S. K. Ali, Z. M. Aydam and B. H. Taher, “Feature extraction methods: a review”, In Journal of Physics: Conference Series, vol. 1591(1), pp. 012028, IOP Publishing, 2020. 10.1088/1742-6596/1591/1/012028/meta
  • [28] A. O. Salau and S. Jain, “Feature extraction: a survey of the types, techniques, applications”, In 2019 international conference on signal processing and communication (ICSC), pp. 158-164, IEEE, 2019.10.1109/ICSC45622.2019.8938371
  • [29] G. Sharma, K. Umapathy and S. Krishnan, “Trends in audio signal feature extraction methods”, Applied Acoustics, vol. 158, pp. 107020, 2020.https://doi.org/10.1016/j.apacoust.2019.107020
  • [30] S. Singh, S. Potala and A. R. Mohanty, “An improved method of detecting engine misfire by sound quality metrics of radiated sound”, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(12), 3112-3124, 2019. https://doi.org/10.1177/0954407018818693
  • [31] E. Germen, M. Başaran and M. Fidan, “Sound based induction motor fault diagnosis using Kohonen self-organizing map”, Mechanical Systems and Signal Processing, vol. 46(1), pp. 45-58, 2014. https://doi.org/10.1016/j.ymssp.2013.12.002
  • [32] A. Abayomi-Alli, O. Abayomi-Alli, J. Vipperman, M. Odusami and S. Misra,“Multi-class classification of impulse and non-impulse sounds using deep convolutional neural network (DCNN)”,In Computational Science and Its Applications–ICCSA 2019: 19th International Conference, Saint Petersburg, Russia, Proceedings, Part V 19, 359-371, Springer International Publishing, 2019. https://doi.org/10.1007/978-3-030-24308-1_30
  • [33] J. Kim and J. Lee, “Statistical classification of vehicle interior sound through up sampling-based augmentation and correction using 1D CNN and LSTM”. IEEE Access, 10, 100615-100626, 2022. 10.1109/ACCESS.2022.3208148
  • [34] C. Honggang, X. Mingyue, F. Chenzhao, S. Renjie and L. Zhe, “Mechanical fault diagnosis of GIS based on MFCCs of sound signals”, In 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE), 1487-1491, IEEE, 2020. 10.1109/ACPEE48638.2020.9136284
  • [35] J. Jakubowski and J. Jackowski, “Recognition of moving tracked and wheeled vehicles based on sound analysis and machine learning algorithms”, International Journal of Automotive and Mechanical Engineering, 18(1), 8478-8488, 2021. https://doi.org/10.15282/ijame.18.1.2021.07.0642
  • [36] E. Babaee, N. B. Anuar, A. W. Abdul Wahab, S. Shamshirband and A. T. Chronopoulos, “An overview of audio event detection methods from feature extraction to classification”, Applied Artificial Intelligence, 31(9-10), 661-714, 2017. https://doi.org/10.1080/08839514.2018.1430469
  • [37] P. Kathirvel, M. S. Manikandan, S. Senthilkumar and K. P. Soman, Noise robust zerocrossing rate computation for audio signal classification. In 3rd International Conference on Trendz in Information Sciences & Computing (TISC2011), 65-69, 2011, IEEE. 10.1109/TISC.2011.6169086
  • [38] A. Prashanth, S. L. Jayalakshmi and R. Vedhapriyavadhana, “A review of deep learning techniques in audio event recognition (AER) applications”. Multimedia Tools and Applications, 83(3), 8129-8143, 2024. https://doi.org/10.1007/s11042-023-15891-z
  • [39] B. Underwood and R. Tashakkori, “Detecting anomalies in honey bee hives using their audio recordings”, In SoutheastCon, 173-177, IEEE, 2022.10.1109/SoutheastCon48659.2022.9763931
  • [40] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj and D. J. Inman, “1D convolutional neural networks and applications: A survey”, Mechanical systems and signal processing, 151, 107398, 2021. https://doi.org/10.1016/j.ymssp.2020.107398
  • [41] S. Sharma and S. Sen, “One-dimensional convolutional neural network-based damage detection in structural joints”. Journal of Civil Structural Health Monitoring, 10(5), 1057-1072, 2020. https://doi.org/10.1007/s13349-020-00434-z
  • [42] H. Perez, J. H. Tah and A. Mosavi, “Deep learning for detecting building defects using convolutional neural networks”, Sensors, 19(16), 3556, 2019. https://doi.org/10.3390/s19163556
  • [43] X. Yang, Y. Ye, X. Li, R. Y. Lau, X. Zhang and X. Huang, “Hyperspectral image classification with deep learning models”. IEEE Transactions on Geoscience and Remote Sensing, 56(9), 5408-5423, 2018. 10.1109/TGRS.2018.2815613
  • [44] G. Guo, H. Wang, D. Bell, Y. Bi and K. Greer, “KNN model-based approach in classification”. In On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Proceedings, 986-996, Springer Berlin Heidelberg, 2003. https://doi.org/10.1007/978-3-540-39964-3_62
  • [45] L. Xiong and Y. Yao, “Study on an adaptive thermal comfort model with K-nearest-neighbors (KNN) algorithm”, Building and Environment, 202, 108026, 2021. https://doi.org/10.1016/j.buildenv.2021.108026
  • [46] S. Jueyendah, M. Lezgy-Nazargah, H. Eskandari-Naddaf and S. A. Emamian, “Predicting the mechanical properties of cement mortar using the support vector machine approach”, Construction and Building Materials, 291, 123396, 2021. https://doi.org/10.1016/j.conbuildmat.2021.123396
  • [47] M. A. Chandra and S. S. Bedi, Survey on SVM and their application in image classification. International Journal of Information Technology, 13(5), 1-11, 2021
  • [48] ***, Heterogeneous Ensemble Learning (Hard voting/Soft voting), https://www.datajango.com/heterogeneous-ensemble-learning-hard-voting-soft-voting/
  • [49] O. Sagi and L. Rokach, “Ensemble Learning: A survey”. Wiley interdisciplinary reviews: data mining and knowledge discovery, 8(4), 1249, 2018. https://doi.org/10.1002/widm.1249
  • [50] A. M. Ibrahim, M. Alfonse and M. Aref, “A SYSTEMATIC REVIEW ON TEXT SUMMARIZATION OF MEDICAL RESEARCH ARTICLES”, International Journal of Intelligent Computing and Information Sciences, 23(2), 50-61, 2023. 10.21608/ijicis.2023.190004.1252
  • [51] L. Dong, Z. Chen, R. Hua, S. Hu and C. Fan, “Research on diagnosis method of centrifugal pump rotor faults based on IPSO-VMD and RVM”, Nuclear Engineering and Technology, 55(3), 827-838, 2023. https://doi.org/10.1016/j.net.2022.10.045
  • [52] X. Xiao, H. Chen, L. Dong, H. Liu, and C. Fan, “Research on Common Fault Diagnosis and Classification Method of Centrifugal Pump Based on ReliefF and SVM”, International Journal of Fluid Machinery and Systems, 15(2), 287-296, 2022. 10.5293/ijfms.2022.15.2.287
  • [53] N. S. Ranawat, P. K. Kankar and A. Miglani, “Fault diagnosis in centrifugal pump using support vector machine and artificial neural network”, J. Eng. Res. EMSME Spec., 99, 111, 2020. https://doi.org/10.36909/jer.EMSME.13881
  • [54] A. R. Al-Obaidi, “Experimental diagnostic of cavitation flow in the centrifugal pump under various impeller speeds based on acoustic analysis method”, Archives of Acoustics, 48(2), 159-170, 2023. 10.24425/aoa.2023.145234
  • [55] E. Ebrahimi and M. Javidan, “Vibration-based classification of centrifugal pumps using support vector machine and discrete wavelet transform”, Journal of Vibroengineering, 19(4), 2586-2597, 2017. https://doi.org/10.21595/jve.2017.18120
  • [56] M. Karagiovanidis, X. E. Pantazi, D. Papamichail and V. Fragos, “Early detection of cavitation in centrifugal pumps using low-cost vibration and sound sensors”, Agriculture, 13(8), 1544, 2023. https://doi.org/10.3390/agriculture13081544
There are 56 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Araştırma Articlessi
Authors

İdris Saçaklıdır 0009-0006-2333-3248

Savaş Koç 0000-0002-5257-3287

Early Pub Date January 13, 2025
Publication Date January 7, 2025
Submission Date June 12, 2024
Acceptance Date November 1, 2024
Published in Issue Year 2024 Volume: 12 Issue: 4

Cite

APA Saçaklıdır, İ., & Koç, S. (2025). Fault Detection from Horizontal Shaft Centrifugal Pump Fan Sound Analysis Using Artificial Intelligence. Balkan Journal of Electrical and Computer Engineering, 12(4), 320-329. https://doi.org/10.17694/bajece.1500321

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı