Fizyolojik Metrikler ve Değişim Noktası Analizi Kullanılarak Gerçek Zamanlı Hayvan Sağlığı İzleme
Year 2025,
Volume: 14 Issue: 1, 94 - 100, 28.03.2025
Bekir Çetintav
,
Halil Berk Aygün
,
Hamza İshak Eseoğlu
,
Mehmet Murat Doğusan
Abstract
Amaç: Bu çalışma, vücut sıcaklığı, kalp atış hızı ve oksijen doygunluğu (SpO2) gibi fizyolojik metrikleri Değişim Noktası Analizi (CPA) ile entegre ederek, sığır sağlığının gerçek zamanlı izlenmesi için bir akıllı kulak etiketi sistemi sunmaktadır. Gereç ve Yöntem: Sistem, 7 gün boyunca 10 sığır üzerinde test edilerek sağlık metrikleri sürekli olarak izlenmiştir. İzlenen parametrelerdeki eş zamanlı değişiklikleri tespit etmek için CPA uygulanmıştır. Sistemin performansı, potansiyel sağlık durumu değişikliklerini tespit etme yeteneği ve güvenilirlik ile özgüllük açısından değerlendirilmiştir. Bulgular: Sistem, bir hayvanda eş zamanlı durum değişikliklerini başarıyla tespit ederek potansiyel bir sağlık sorunu işaret ederken, diğer dokuz hayvanda önemli bir değişiklik göstermemiştir. Bu durum, sistemin normal değişkenlik ile sağlıkla ilgili önemli değişiklikleri ayırt etme yeteneğini göstermektedir. Sonuç: Önerilen akıllı kulak etiketi sistemi, Hassas Hayvancılık Yönetimi için önemli bir potansiyele sahiptir. Çoklu fizyolojik metriklerin entegrasyonu ve ileri analiz yöntemleri sayesinde hayvan refahını artırmak ve hastalıkların erken teşhisini sağlamak için güvenilir bir çerçeve sunmaktadır.
References
- Awasthi, A., Awasthi, A., Riordan, D., & Walsh, J. (2016). Non-invasive sensor technology for the development of a dairy cattle health monitoring system. Computers, 5(4), 23. https://doi.org/10.3390/computers5040023
- Besler, B. C., Akdag, Y., Gunaydin, A., & Ercan, E. (2024). Scoping review of precision technologies for cattle monitoring. Smart Agricultural Technology, 9, 100596. https://doi.org/10.1016/j.atech.2024.100596
- Calcante, A., & Tangorra, F. M. (2021). Measuring oxygen saturation and pulse rate in dairy cows before and after machine milking using a low-cost pulse oximeter. Journal of Agricultural Engineering, 52(2).
https://doi.org/10.4081/jae.2021.1155
- Chen, J., & Gupta, A. K. (2000). Parametric statistical change point analysis. Birkhäuser.
- Chevalier, G., Garabedian, C., Pekar, J. D., Wojtanowski, A., Le Hesran, D., Galan, L. E., Sharma, D., Storme, L., Houfflin-Debarge, V., De Jonckheere, J., & Ghesquière, L. (2023). Early heart rate variability changes during acute fetal inflammatory response syndrome: An experimental study in a fetal sheep model. PLoS One, 18(11), e0293926.
- Cox, S. (Ed.). (2003). Precision livestock farming. Brill Wageningen Academic.
https://doi.org/10.3920/978-90-8686-515-4
- Darwis, D., Mehta, A. R., Wati, N. E., Samsugi, S., & Swaminarayan, P. R. (2022). Digital smart collar: Monitoring cow health using internet of things. In 2022 International Symposium on Electronics and Smart Devices (ISESD) (pp. 1–5). IEEE.
- Gaughan, J. B., & Mader, T. L. (2014). Body temperature and respiratory dynamics in un-shaded beef cattle. International Journal of Biometeorology, 58(7), 1443–1450.
- Halachmi, I., Guarino, M., Bewley, J., & Pastell, M. (2019). Smart animal agriculture: Application of real-time sensors to improve animal well-being and production. Annual Review of Animal Biosciences, 7(1), 403–425.
- Hammer, N., Adrion, F., Staiger, M., Holland, E., Gallmann, E., & Jungbluth, T. (2016). Comparison of different ultra-high-frequency transponder ear tags for simultaneous detection of cattle and pigs. Livestock Science, 187, 125–137. https://doi.org/10.1016/j.livsci.2016.03.007
- Handa, D., & Peschel, J. M. (2022). A review of monitoring techniques for livestock respiration and sounds. Frontiers in Animal Science, 3, 904834. https://doi.org/10.3389/fanim.2022.904834
- He, P., Chen, Z., Yu, H., Hayat, K., He, Y., Pan, J., & Lin, H. (2022). Research progress in the early warning of chicken diseases by monitoring clinical symptoms. Applied Sciences, 12(11), 5601.
- Hopster, H., Bruckmaier, R. M., Van der Werf, J. T. N., Korte, S. M., Macuhova, J., Korte-Bouws, G., & van Reenen, C. G. (2002). Stress responses during milking; comparing conventional and automatic milking in primiparous dairy cows. Journal of Dairy Science, 85(12), 3206–3216.
- Jorquera-Chavez, M., Fuentes, S., Dunshea, F. R., Warner, R. D., Poblete, T., Morrison, R. S., & Jongman, E. C. (2020). Remotely sensed imagery for early detection of respiratory disease in pigs: A pilot study. Animals, 10(3), 451.
- Kim, H., Min, Y., & Choi, B. (2019). Real-time temperature monitoring for the early detection of mastitis in dairy cattle: Methods and case researches. Computers and Electronics in Agriculture, 162, 119–125.
- Lee, M., & Seo, S. (2021). Wearable wireless biosensor technology for monitoring cattle: A review. Animals, 11(10), 2779.
- Lovarelli, D., Bacenetti, J., & Guarino, M. (2020). A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? Journal of Cleaner Production, 262, 121409. https://doi.org/10.1016/j.jclepro.2020.121409
- Lowe, G. L., Sutherland, M. A., Waas, J. R., Schaefer, A. L., Cox, N. R., & Stewart, M. (2019). Physiological and behavioral responses as indicators for early disease detection in dairy calves. Journal of Dairy Science, 102(6), 5389–5402.
- Michelena, Á., Fontenla-Romero, Ó., & Luis Calvo-Rolle, J. (2024). A review and future trends of precision livestock over dairy and beef cow cattle with artificial intelligence. Logic Journal of the IGPL. Advance online publication. https://doi.org/10.1093/jigpal/jzae111
- Neethirajan, S. (2023). SOLARIA-SensOr-driven resiLient and adaptive monitoRIng of farm Animals. Agriculture, 13(2), 436.
- Neethirajan, S., & Kemp, B. (2021). Digital livestock farming. Sensors and Bio-sensing Research, 32, 100408. https://doi.org/10.1016/j.sbsr.2021.100408
- Neethirajan, S. (2017). Recent advances in wearable sensors for animal health management. Sensors and Bio-sensing Research, 12, 15–29. https://doi.org/10.1016/j.sbsr.2016.11.004
- Nie, L., Berckmans, D., Wang, C., & Li, B. (2020). Is continuous heart rate monitoring of livestock a dream or is it realistic? A review. Sensors, 20, 2291. https://doi.org/10.3390/s20082291
- Peel, D. (2020). Economic impacts of respiratory diseases in livestock. Applied Animal Economics, 12, 200–213. https://doi.org/10.1002/agec.2020.12025
- Peschel, J., & Handa, D. (2022). Review of respiratory monitoring in livestock. Frontiers in Animal Science, 3, 904834.
https://doi.org/10.3389/fanim.2022.904834
- Rahman, A., Smith, D. V., Little, B., Ingham, A. B., Greenwood, P. L., & Bishop-Hurley, G. J. (2018). Cattle behaviour classification from collar, halter, and ear tag sensors. Information Processing in Agriculture, 5(2), 124–133.
https://doi.org/10.1016/j.inpa.2017.10.001
- Saint‐Dizier, M., & Chastant‐Maillard, S. (2012). Towards an automated detection of oestrus in dairy cattle. Reproduction in Domestic Animals, 47(6), 1056–1061.
https://doi.org/10.1111/j.1439-0531.2011.01971.x
- Salles, M. S. V., da Silva, S. C., Salles, F. A., Roma, L. C., Jr, El Faro, L., Bustos Mac Lean, P. A., Lins de Oliveira, C. E., & Martello, L. S. (2016). Mapping the body surface temperature of cattle by infrared thermography. Journal of Thermal Biology, 62(Pt A), 63–69.
- Shahriar, M. S., et al. (2016). Detecting heat events in dairy cows using accelerometers and unsupervised learning. Computers and Electronics in Agriculture, 128, 20–26.
https://doi.org/10.1016/j.compag.2016.08.009
- Truong, C., Oudre, L., & Vayatis, N. (2018). ruptures: change point detection in Python [Preprint]. arXiv. https://doi.org/10.48550/arXiv.1801.00826
- Tzanidakis, C., Tzamaloukas, O., Simitzis, P., & Panagakis, P. (2023). Precision livestock farming applications for grazing animals. Agriculture, 13, 288. https://doi.org/10.3390/agriculture13020288
- Vranken, E., & Berckmans, D. (2017). Precision livestock farming for pigs. Animal Frontiers, 7(1), 32–37.
- Zerbini, E., Gemeda, T., O’Neill, D. H., Howell, P. J., & Schroter, R. C. (1992). Relationships between cardio-respiratory parameters and draught work output in F1 crossbred dairy cows under field conditions. Animal Science, 55(1), 1–10.
- Zhang, M., Feng, H., Luo, H., et al. (2020). Comfort and health evaluation of live mutton sheep during transportation based on wearable multi-sensor systems. Computers and Electronics in Agriculture, 176, 105632.
https://doi.org/10.1016/j.compag.2020.105632
Utilizing Physiological Metrics and Change Point Analysis for Real-Time Livestock Health Monitoring
Year 2025,
Volume: 14 Issue: 1, 94 - 100, 28.03.2025
Bekir Çetintav
,
Halil Berk Aygün
,
Hamza İshak Eseoğlu
,
Mehmet Murat Doğusan
Abstract
Objective: This study introduces a smart ear tag system for real-time monitoring of cattle health, integrating physiological metrics such as body temperature, heart rate, and oxygen saturation (SpO2) with Change Point Analysis (CPA) to detect state changes. Materials and Methods: The system was tested over a 7-day period on 10 cattle, monitoring health metrics continuously. CPA was applied to identify synchronized changes in the monitored parameters. The system's performance was evaluated based on its ability to detect potential health status changes while maintaining reliability and specificity. Results: The system successfully identified synchronized state changes in one animal, flagging a potential health issue, while showing no significant changes in the other nine animals. This indicates the system’s capability to differentiate between normal variability and significant health-related changes. Conclusion: The proposed smart ear tag system demonstrates significant potential for Precision Livestock Farming. By integrating multiple physiological metrics and advanced analysis, it offers a reliable framework for improving animal welfare and enabling early disease detection.
Ethical Statement
Ethical Approval
Institution: Mehmet Akif Ersoy University Animal Experiments Local Ethics Committee
Date: 27.10.2023
Approval no: 1203
Supporting Institution
This study was financed by 2209 Student Project Grant Number: 1919B012300482 by TUBITAK-The Scientific and Technological Research Council of Türkiye.
Thanks
The authors wish to thank Celil Aygun for his support during the application and data collection process.
References
- Awasthi, A., Awasthi, A., Riordan, D., & Walsh, J. (2016). Non-invasive sensor technology for the development of a dairy cattle health monitoring system. Computers, 5(4), 23. https://doi.org/10.3390/computers5040023
- Besler, B. C., Akdag, Y., Gunaydin, A., & Ercan, E. (2024). Scoping review of precision technologies for cattle monitoring. Smart Agricultural Technology, 9, 100596. https://doi.org/10.1016/j.atech.2024.100596
- Calcante, A., & Tangorra, F. M. (2021). Measuring oxygen saturation and pulse rate in dairy cows before and after machine milking using a low-cost pulse oximeter. Journal of Agricultural Engineering, 52(2).
https://doi.org/10.4081/jae.2021.1155
- Chen, J., & Gupta, A. K. (2000). Parametric statistical change point analysis. Birkhäuser.
- Chevalier, G., Garabedian, C., Pekar, J. D., Wojtanowski, A., Le Hesran, D., Galan, L. E., Sharma, D., Storme, L., Houfflin-Debarge, V., De Jonckheere, J., & Ghesquière, L. (2023). Early heart rate variability changes during acute fetal inflammatory response syndrome: An experimental study in a fetal sheep model. PLoS One, 18(11), e0293926.
- Cox, S. (Ed.). (2003). Precision livestock farming. Brill Wageningen Academic.
https://doi.org/10.3920/978-90-8686-515-4
- Darwis, D., Mehta, A. R., Wati, N. E., Samsugi, S., & Swaminarayan, P. R. (2022). Digital smart collar: Monitoring cow health using internet of things. In 2022 International Symposium on Electronics and Smart Devices (ISESD) (pp. 1–5). IEEE.
- Gaughan, J. B., & Mader, T. L. (2014). Body temperature and respiratory dynamics in un-shaded beef cattle. International Journal of Biometeorology, 58(7), 1443–1450.
- Halachmi, I., Guarino, M., Bewley, J., & Pastell, M. (2019). Smart animal agriculture: Application of real-time sensors to improve animal well-being and production. Annual Review of Animal Biosciences, 7(1), 403–425.
- Hammer, N., Adrion, F., Staiger, M., Holland, E., Gallmann, E., & Jungbluth, T. (2016). Comparison of different ultra-high-frequency transponder ear tags for simultaneous detection of cattle and pigs. Livestock Science, 187, 125–137. https://doi.org/10.1016/j.livsci.2016.03.007
- Handa, D., & Peschel, J. M. (2022). A review of monitoring techniques for livestock respiration and sounds. Frontiers in Animal Science, 3, 904834. https://doi.org/10.3389/fanim.2022.904834
- He, P., Chen, Z., Yu, H., Hayat, K., He, Y., Pan, J., & Lin, H. (2022). Research progress in the early warning of chicken diseases by monitoring clinical symptoms. Applied Sciences, 12(11), 5601.
- Hopster, H., Bruckmaier, R. M., Van der Werf, J. T. N., Korte, S. M., Macuhova, J., Korte-Bouws, G., & van Reenen, C. G. (2002). Stress responses during milking; comparing conventional and automatic milking in primiparous dairy cows. Journal of Dairy Science, 85(12), 3206–3216.
- Jorquera-Chavez, M., Fuentes, S., Dunshea, F. R., Warner, R. D., Poblete, T., Morrison, R. S., & Jongman, E. C. (2020). Remotely sensed imagery for early detection of respiratory disease in pigs: A pilot study. Animals, 10(3), 451.
- Kim, H., Min, Y., & Choi, B. (2019). Real-time temperature monitoring for the early detection of mastitis in dairy cattle: Methods and case researches. Computers and Electronics in Agriculture, 162, 119–125.
- Lee, M., & Seo, S. (2021). Wearable wireless biosensor technology for monitoring cattle: A review. Animals, 11(10), 2779.
- Lovarelli, D., Bacenetti, J., & Guarino, M. (2020). A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? Journal of Cleaner Production, 262, 121409. https://doi.org/10.1016/j.jclepro.2020.121409
- Lowe, G. L., Sutherland, M. A., Waas, J. R., Schaefer, A. L., Cox, N. R., & Stewart, M. (2019). Physiological and behavioral responses as indicators for early disease detection in dairy calves. Journal of Dairy Science, 102(6), 5389–5402.
- Michelena, Á., Fontenla-Romero, Ó., & Luis Calvo-Rolle, J. (2024). A review and future trends of precision livestock over dairy and beef cow cattle with artificial intelligence. Logic Journal of the IGPL. Advance online publication. https://doi.org/10.1093/jigpal/jzae111
- Neethirajan, S. (2023). SOLARIA-SensOr-driven resiLient and adaptive monitoRIng of farm Animals. Agriculture, 13(2), 436.
- Neethirajan, S., & Kemp, B. (2021). Digital livestock farming. Sensors and Bio-sensing Research, 32, 100408. https://doi.org/10.1016/j.sbsr.2021.100408
- Neethirajan, S. (2017). Recent advances in wearable sensors for animal health management. Sensors and Bio-sensing Research, 12, 15–29. https://doi.org/10.1016/j.sbsr.2016.11.004
- Nie, L., Berckmans, D., Wang, C., & Li, B. (2020). Is continuous heart rate monitoring of livestock a dream or is it realistic? A review. Sensors, 20, 2291. https://doi.org/10.3390/s20082291
- Peel, D. (2020). Economic impacts of respiratory diseases in livestock. Applied Animal Economics, 12, 200–213. https://doi.org/10.1002/agec.2020.12025
- Peschel, J., & Handa, D. (2022). Review of respiratory monitoring in livestock. Frontiers in Animal Science, 3, 904834.
https://doi.org/10.3389/fanim.2022.904834
- Rahman, A., Smith, D. V., Little, B., Ingham, A. B., Greenwood, P. L., & Bishop-Hurley, G. J. (2018). Cattle behaviour classification from collar, halter, and ear tag sensors. Information Processing in Agriculture, 5(2), 124–133.
https://doi.org/10.1016/j.inpa.2017.10.001
- Saint‐Dizier, M., & Chastant‐Maillard, S. (2012). Towards an automated detection of oestrus in dairy cattle. Reproduction in Domestic Animals, 47(6), 1056–1061.
https://doi.org/10.1111/j.1439-0531.2011.01971.x
- Salles, M. S. V., da Silva, S. C., Salles, F. A., Roma, L. C., Jr, El Faro, L., Bustos Mac Lean, P. A., Lins de Oliveira, C. E., & Martello, L. S. (2016). Mapping the body surface temperature of cattle by infrared thermography. Journal of Thermal Biology, 62(Pt A), 63–69.
- Shahriar, M. S., et al. (2016). Detecting heat events in dairy cows using accelerometers and unsupervised learning. Computers and Electronics in Agriculture, 128, 20–26.
https://doi.org/10.1016/j.compag.2016.08.009
- Truong, C., Oudre, L., & Vayatis, N. (2018). ruptures: change point detection in Python [Preprint]. arXiv. https://doi.org/10.48550/arXiv.1801.00826
- Tzanidakis, C., Tzamaloukas, O., Simitzis, P., & Panagakis, P. (2023). Precision livestock farming applications for grazing animals. Agriculture, 13, 288. https://doi.org/10.3390/agriculture13020288
- Vranken, E., & Berckmans, D. (2017). Precision livestock farming for pigs. Animal Frontiers, 7(1), 32–37.
- Zerbini, E., Gemeda, T., O’Neill, D. H., Howell, P. J., & Schroter, R. C. (1992). Relationships between cardio-respiratory parameters and draught work output in F1 crossbred dairy cows under field conditions. Animal Science, 55(1), 1–10.
- Zhang, M., Feng, H., Luo, H., et al. (2020). Comfort and health evaluation of live mutton sheep during transportation based on wearable multi-sensor systems. Computers and Electronics in Agriculture, 176, 105632.
https://doi.org/10.1016/j.compag.2020.105632