Research Article
BibTex RIS Cite

Bazı maki türlerindeki uçucu asitlerin miktarı

Year 2018, Volume: 20 Issue: 1, 67 - 72, 16.04.2018

Abstract

Hammaddeye olan talebin son yıllardaki artışı orman endüstrisini
alternatif kaynakları araştırmaya yöneltmiştir. Bu nedenle çalışmada maki
bitkileri olan Laurus nobilis, Tamarix
parviflora, Vitex agnus castus, Styrax officinalis, Fontanesia philliraeoides,
Myrtus communis, Paliurus spina-christi
ve Pistacia terebinthus ele alınmış ve söz konusu türlerde uçucu
asitlerin miktarları belirlenmiştir. Bitkilere ait örneklerde formil ve asetil
miktarları sırasıyla 2.21-3.58 mmol/100 g ve 84.16-89.42 mmol/100 g aralığında
tespit edilmiştir. Formil ve asetil gruplarının toplam değerleri materyallerde
%3.69 ile 3.94 aralığında sıralanmıştır. Maki bitkilerinden elde edilen
sonuçların yapraklı ağaç türleri ile karşılaştırılabilir düzeyde olduğu
görülmüştür.

References

  • Balaban, M., Ucar, G (2001). The correlation of wood acidity to its solubility by hot water and alkali. Holz Roh-Werkstoff, 59: 67-70.
  • Balaban, M., Ucar, G (2003). Estimation of volatile acids in wood and bark. Holz Roh Werkst, 61: 465-468.
  • Choon, KK., Roffael, E (1990). The acidity of five hardwood species. Holzforschung, 44: 53-58.
  • Cooper, P., Balantinecz, J (1999). Agricultural waste materials for composites: A Canadian reality. Centre for Management Technology Global Panel Based Conference, Nikko Hotel, Kuala Lumpur, 18-19 October.
  • Fengel, D., Wegener, G (1984). Wood-Chemistry, Ultrastructure, Reaction. Walter de Gruyter, Berlin.
  • Gustavsson, H (1992). Building materials identified as major sources for indoor air pollutants. BFR D10, 1992.
  • Hachmi, H., Moslemi, AA (1990). Effect of wood pH and buffering capacity on wood-cement compability. Holz als Roh- and Werkstoff, 44: 425-430.
  • Johns, WE., Niazi, KA (1981). Effect of pH and buffering capacity of wood on the geletion time of urea-formaldehyde resin. Wood and Fiber, 12(4): 255-263.
  • Kaya, B., Aladağ, C (2009). Maki ve garig topluluklarının Türkiye'deki yayılış alanları ve ekolojik özelliklerinin incelenmesi. SÜ Sosyal Bilimler Enstitüsü Dergisi, 22: 67–80.
  • Klauditz, W (1957). Zur biologisch-mechanischen Wirkung der Acetylgruppen im Festigkeitsgewebe der Laubhölzer. Holzforschung, 11: 47-55.
  • Krilov, A., Lasender, WH (1988). The acidity of heartwood and sapwood in some Eucalyptus species. Holzforschung, 42(4): 253-258.
  • Matteoli, U., Menchi, G., Staccioli, U., Tamburini, U (1992). Acids groups structure in wood as shown using selective reduction. Holz als Roh- and Werkstoff, 50: 438-440.
  • Meyers, GC (1978). How adjusting fiber acidity improved strength of dry-formed hardboards. Forest Prod. J., 28: 48-50.
  • Packman, DF (1960). The Acidity of Wood. Holzforschung, 14: 178-183.
  • Poblete, H., Roffael, E (1985a). Über chemische Veränderungen in Holzspänen bei der Herstellung von Phenol-Formaldehydharz-gebundenen Spannplatten. Adhäsion, 29(3): 21-28.
  • Poblete, H., Roffael, E (1985b). Über chemische Veränderungen in Holzspänen bei der Herstellung von Harnstoff-Formaldehydharzgebundenen Spannplatten. Holz Roh Werkst, 43: 57-62.
  • Risholm-Sundman, M., Lundgren, M., Vestin, E., Herder P (1998). Emissions of acetic acid and other volatile organic compounds from different species of solid wood. Holz Roh Werkst, 56: 125-129.
  • Roffael, E (1989). Abgabe von fülichtigen organischen Säuren aus Holzspänen und Holzspanplatten. Holz Roh Werkst, 47: 447-452.
  • Roffael, E., Miertsch, H., Schröder, M (1990). Zum Mechanismus der Bildung von flüchtigen Säuren bei der Verleimung mit alkalisch härtenden Phenolformaldehydharzen. Holz-Zentralblatt, 116: 1684-1685.
  • Roffael, E (2008). On the release of volatile acids from wood-based panels – chemical aspects –. Holz Roh Werkst, 66: 373-378.
  • Runkel, ROH (1951). Zur Kenntnis des thermoplastischen Verhaltens von Holz. Holz Roh Werkst, 9: 41-50.
  • Sandermann, W., Rothkamm, M (1959). Über die Bestimmung der pH Werte von Handelshölzern und deren Bedeutung für die Praxis. Holz als Roh- and Werkstoff, 17: 433-440.
  • Sandermann, W., Gerhardt, U., Weissmann, G (1970). Untersuchungen über flüchtige organische Säuren in einigen Holzarten. Holz Roh Werkst, 28: 59-67.
  • Stamm, AJ (1961). A comparison of three methods for determining the pH of wood and paper. Forest Prod. J., 11: 310-317.
  • Sundin, B., Risholm-Sundman, M., Edenholm, K (1992). Emission of formaldehyde and other volatile organic compounds from sawdust and lumber, different wood-based panels and other building materials. Proc. 26th Int. Particleboard/Composite Materials Symposium, Pullman.
  • Timell, TE (1957). The acyl groups in wood. Svenks Papperstidning, 60: 762-766.
  • Wolkooff, P (1995). Volatile organic compounds - Sources, measurements, emissions and the impact on indoor air quality. Indoor Air, Supplement No 3/95.
  • Yaşar, S., Demir, F., Karatepe, Y (2016a). Bazı maki türlerinin kimyasal içeriği ve fenolik ekstraktifleri üzerine araştırmalar. Turkish Journal of Forestry, 17(2): 187-193.
  • Yaşar, S., Ceviz, AU., Karatepe, Y (2016b). Laurus nobilis, Vitex agnus-castus ve Tamarix parviflora türlerinin kimyasal içeriği ve fenolik ekstraktiflerinin incelenmesi. SDÜ Fen Bilimleri Enstitüsü Dergisi, 20(2): 182-187.
  • Yaşar, S., Beram, A., Güler, G (2017). Kermes meşesi (Quercus coccifera L.) odunu fenolik ekstraktifleri. MAKÜ Fen Bilimleri Enstitüsü Dergisi, (Özel Sayı 1), 73-78.
  • Zanuttini, M., Marzocchi, V (1997). Kinetics of alkaline deacetylation of poplar wood. Holzforschung, 51: 251-256.

Volatile acid content of some maquis species

Year 2018, Volume: 20 Issue: 1, 67 - 72, 16.04.2018

Abstract

In recent years, the increased demands for raw materials in wood
industry have led researchers to investigate alternative raw material sources.
Therefore, this study examined the volatile acid contents, which are considered
as an important parameter in the different fields of wood utilization, from
maquis species which are Laurus nobilis,
Tamarix parviflora, Vitex agnus-castus,
Styrax officinalis, Fontanesia philliraeoides, Myrtus communis, Paliurus
spina-christi
and Pistacia
terebinthus
. The formyl and acetyl contents were determined between
2.21-3.58 mmol/100 g and 84.16-89.42 mmol/100 g for maquis species, respectively.
Total volatile acid contents calculated from formyl and acetyl groups were
ranged from 3.69 to 3.94%. Results of the study indicated that mentioned maquis
species are comparable to hardwood species. 

References

  • Balaban, M., Ucar, G (2001). The correlation of wood acidity to its solubility by hot water and alkali. Holz Roh-Werkstoff, 59: 67-70.
  • Balaban, M., Ucar, G (2003). Estimation of volatile acids in wood and bark. Holz Roh Werkst, 61: 465-468.
  • Choon, KK., Roffael, E (1990). The acidity of five hardwood species. Holzforschung, 44: 53-58.
  • Cooper, P., Balantinecz, J (1999). Agricultural waste materials for composites: A Canadian reality. Centre for Management Technology Global Panel Based Conference, Nikko Hotel, Kuala Lumpur, 18-19 October.
  • Fengel, D., Wegener, G (1984). Wood-Chemistry, Ultrastructure, Reaction. Walter de Gruyter, Berlin.
  • Gustavsson, H (1992). Building materials identified as major sources for indoor air pollutants. BFR D10, 1992.
  • Hachmi, H., Moslemi, AA (1990). Effect of wood pH and buffering capacity on wood-cement compability. Holz als Roh- and Werkstoff, 44: 425-430.
  • Johns, WE., Niazi, KA (1981). Effect of pH and buffering capacity of wood on the geletion time of urea-formaldehyde resin. Wood and Fiber, 12(4): 255-263.
  • Kaya, B., Aladağ, C (2009). Maki ve garig topluluklarının Türkiye'deki yayılış alanları ve ekolojik özelliklerinin incelenmesi. SÜ Sosyal Bilimler Enstitüsü Dergisi, 22: 67–80.
  • Klauditz, W (1957). Zur biologisch-mechanischen Wirkung der Acetylgruppen im Festigkeitsgewebe der Laubhölzer. Holzforschung, 11: 47-55.
  • Krilov, A., Lasender, WH (1988). The acidity of heartwood and sapwood in some Eucalyptus species. Holzforschung, 42(4): 253-258.
  • Matteoli, U., Menchi, G., Staccioli, U., Tamburini, U (1992). Acids groups structure in wood as shown using selective reduction. Holz als Roh- and Werkstoff, 50: 438-440.
  • Meyers, GC (1978). How adjusting fiber acidity improved strength of dry-formed hardboards. Forest Prod. J., 28: 48-50.
  • Packman, DF (1960). The Acidity of Wood. Holzforschung, 14: 178-183.
  • Poblete, H., Roffael, E (1985a). Über chemische Veränderungen in Holzspänen bei der Herstellung von Phenol-Formaldehydharz-gebundenen Spannplatten. Adhäsion, 29(3): 21-28.
  • Poblete, H., Roffael, E (1985b). Über chemische Veränderungen in Holzspänen bei der Herstellung von Harnstoff-Formaldehydharzgebundenen Spannplatten. Holz Roh Werkst, 43: 57-62.
  • Risholm-Sundman, M., Lundgren, M., Vestin, E., Herder P (1998). Emissions of acetic acid and other volatile organic compounds from different species of solid wood. Holz Roh Werkst, 56: 125-129.
  • Roffael, E (1989). Abgabe von fülichtigen organischen Säuren aus Holzspänen und Holzspanplatten. Holz Roh Werkst, 47: 447-452.
  • Roffael, E., Miertsch, H., Schröder, M (1990). Zum Mechanismus der Bildung von flüchtigen Säuren bei der Verleimung mit alkalisch härtenden Phenolformaldehydharzen. Holz-Zentralblatt, 116: 1684-1685.
  • Roffael, E (2008). On the release of volatile acids from wood-based panels – chemical aspects –. Holz Roh Werkst, 66: 373-378.
  • Runkel, ROH (1951). Zur Kenntnis des thermoplastischen Verhaltens von Holz. Holz Roh Werkst, 9: 41-50.
  • Sandermann, W., Rothkamm, M (1959). Über die Bestimmung der pH Werte von Handelshölzern und deren Bedeutung für die Praxis. Holz als Roh- and Werkstoff, 17: 433-440.
  • Sandermann, W., Gerhardt, U., Weissmann, G (1970). Untersuchungen über flüchtige organische Säuren in einigen Holzarten. Holz Roh Werkst, 28: 59-67.
  • Stamm, AJ (1961). A comparison of three methods for determining the pH of wood and paper. Forest Prod. J., 11: 310-317.
  • Sundin, B., Risholm-Sundman, M., Edenholm, K (1992). Emission of formaldehyde and other volatile organic compounds from sawdust and lumber, different wood-based panels and other building materials. Proc. 26th Int. Particleboard/Composite Materials Symposium, Pullman.
  • Timell, TE (1957). The acyl groups in wood. Svenks Papperstidning, 60: 762-766.
  • Wolkooff, P (1995). Volatile organic compounds - Sources, measurements, emissions and the impact on indoor air quality. Indoor Air, Supplement No 3/95.
  • Yaşar, S., Demir, F., Karatepe, Y (2016a). Bazı maki türlerinin kimyasal içeriği ve fenolik ekstraktifleri üzerine araştırmalar. Turkish Journal of Forestry, 17(2): 187-193.
  • Yaşar, S., Ceviz, AU., Karatepe, Y (2016b). Laurus nobilis, Vitex agnus-castus ve Tamarix parviflora türlerinin kimyasal içeriği ve fenolik ekstraktiflerinin incelenmesi. SDÜ Fen Bilimleri Enstitüsü Dergisi, 20(2): 182-187.
  • Yaşar, S., Beram, A., Güler, G (2017). Kermes meşesi (Quercus coccifera L.) odunu fenolik ekstraktifleri. MAKÜ Fen Bilimleri Enstitüsü Dergisi, (Özel Sayı 1), 73-78.
  • Zanuttini, M., Marzocchi, V (1997). Kinetics of alkaline deacetylation of poplar wood. Holzforschung, 51: 251-256.
There are 31 citations in total.

Details

Primary Language English
Journal Section Biomaterial Engineering, Bio-based Materials, Wood Science
Authors

Samim Yaşar

Publication Date April 16, 2018
Published in Issue Year 2018 Volume: 20 Issue: 1

Cite

APA Yaşar, S. (2018). Volatile acid content of some maquis species. Bartın Orman Fakültesi Dergisi, 20(1), 67-72. https://doi.org/10.24011/barofd.394389


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Fax: +90 (378) 223 5077, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com