Research Article
BibTex RIS Cite

Bozkır-Orman Geçiş Kuşağındaki Çalı Türlerinin Toprak Biyoçeşitliliğine Etkisi

Year 2018, Volume: 20 Issue: 3, 583 - 589, 15.12.2018

Abstract

Bitki örtüsünü, çalı ve otsu türlerin oluşturduğu kurak ekosistemlerde
toprak canlılarının aktiviteleri birçok önemli ekosistem süreçlerinin
oluşmasına neden olur. Kurak alanlarda özellikle yamalar halinde bulunan bitki
örtüsü altında, çalı türlerinin altında ve biyolojik toprak kabuğunda
mikroeklembacaklı çeşitliliği bitki örtüsüne sahip olmayan alanlara kıyasla
daha fazla bulunmaktadır. Bu çalışmada meşe (Quercus pubescens Willd.) ve badem (Amygdalus orientalis Mill.) çalılarının toprak
mikroeklembacaklılarının miktar ve çeşitliliği üzerindeki etkilerinin
belirlenmesi amaçlanmıştır. Bu amaç için 5 adet meşe kolektifi ve 5 adet badem
çalısı belirlenmiş ayrıca 5 adet çalı türlerinin olmadığı kontrol alanı
örneklenmiştir. Mikroeklembacaklıların araziden örneklenmesi için bozulmamış
toprak örnekleri 5 cm çapında ve 5 cm yüksekliğindeki çelik silindirler
kullanılmıştır. Sonuç olarak mikroeklembacaklıların miktarları zamansal ve
mekânsal değişiklikler göstermiştir. Collembola ve Acarina taksonları
mikroeklembacaklıların meşe alanında % 97, badem alanında % 93, kontrol
alanında ise % 97’sini oluşturmaktadır. En yüksek toplam canlı miktarı 31179
bry.m-2 ile meşe kolektifi altında bulunmuştur. Badem ve kontrol alanlarında bulunan
toplam mikroeklembacaklıların miktarı meşe alanına kıyasla sırası ile % 75 ve %
69 daha azdır. Toprak nemi ve pH’sı yarı kurak bozkır orman geçiş kuşağındaki
mikroeklembacaklıların miktar ve dağılımlarındaki en önemli faktördür.

References

  • Bardgett R, Hopkins D, Usher M. (2005). Biological diversity and function in soils. Cambridge University Press: UK.
  • Bei-Bienko GY, Blagoveshchenskii DI, Chernova OA, Datsig EM, Emel'yanov AF, Kerzhner IM, Loginova MM, Martynova EF (1967). Keys to Insects of the European USSR. Akademiya Nauk: USSR.
  • Bird SB, Coulson RN, Fisher RF (2004). Changes in soil and litter arthropod abundance following tree harvesting and site preparation in a loblolly pine (Pinus taeda L.) plantation. Forest Ecology and Management., 202; 195-208.
  • Cakir M, Makineci E (2013). Humus characteristics and seasonal changes of soil arthropod communities in a natural sessile oak (Quercus petraea L.) stand and adjacent Austrian pine (Pinus nigra Arnold) plantation. Environmental Monitoring and Assessment, 185; 8943-8955.
  • Christiansen K (1964). Bionomics of collembola. Annual Review of Entomology, 9; 147-178.
  • Coleman DC, Crossley DA, Hendrix PF (2004). Fundamentals of soil ecology. Academic press: USA.
  • Çakır F, Bozkuş F (2017). Çankırı Yöresi Ormandan Stebe Geçiş Kuşağındaki Meşcere Kuruluş Özellikleri. Anadolu Orman Araştırmaları Dergisi, 3; 111-121.
  • Çakır M (2013). Toprak Eklembacaklılarının, Kayın ve Meşe Ekosistemindeki Mevsimsel Değişimi ve Ölü Örtü Ayrışmasına Etkileri. Ph.D., Institute of Science and Technology, PhD thesis, Istanbul University, Science Institute (in Turkish, with English summary). İstanbul.
  • Çakır M (2017). Kurak Ekosistemlerde Toprak Faunasının Önemi. Anatolian Journal of Forest Research, 3; 67-78.
  • Çakır M, Makineci E (2012). Toprak faunası: sınıflandırılması ve besin ağındaki yeri. İ.Ü. Orman Fakültesi Dergisi, 61; 43-55.
  • Çakır M, Makineci E (2018). Community structure and seasonal variations of soil microarthropods during environmental changes. Applied Soil Ecology, 123; 313-317.
  • Çetik R (1985). Türkiye Vejetasyonu I: İç Anadolu’nun Vejetasyonu ve Ekolojisi. Selçuk Üniversitesi Yayınları: Konya.
  • Dindal DL (1990). Soil biology guide. Wiley: New York.
  • Frouz J, Keplin B, Pizl V, Tajovskı K, Starı J, Lukesova A, Nováková A, Hánel L, Materna J, Düker C (2001). Soil biota and upper soil layer development in two contrasting post-mining chronosequences. Ecological engineering, 17; 275-284.
  • Irmler U (2006). Climatic and litter fall effects on collembolan and oribatid mite species and communities in a beech wood based on a 7 years investigation. European Journal of Soil Biology, 42; 51-62.
  • Joo SJ, Yim MH, Nakane K (2006). Contribution of microarthropods to the decomposition of needle litter in a Japanese cedar (Cryptomeria japonica D. Don) plantation. Forest ecology and management, 234; 192-198.
  • Karaöz MÖ (1989). Toprakların bazı kimyasal özelliklerinin (pH, karbonat, tuzluluk, organik madde, total azot, yararlanılabilir fosfor) analiz yöntemleri. Journal of the Faculty of Forestry Istanbul University, 39; 64-82.
  • Kautz T, López-Fando C, Ellmer F (2006). Abundance and biodiversity of soil microarthropods as influenced by different types of organic manure in a long-term field experiment in Central Spain. Applied Soil Ecology, 33; 278-285.
  • Krantz GW (1978). A manual of acarology (2nd edition). Oregon St Univ Bookstores: Corvallis.
  • Lalley J, Viles H, Henschel, J, Lalley V (2006). Lichen-dominated soil crusts as arthropod habitat in warm deserts. Journal of Arid Environments, 67; 579-593.
  • Liu R, Zhu F, Steinberger Y (2016). Changes in ground-dwelling arthropod diversity related to the proximity of shrub cover in a desertified system. Journal of Arid Environments, 124; 172-179.
  • Longcore T. (2003). Terrestrial arthropods as indicators of ecological restoration success in coastal sage scrub (California, USA). Restoration Ecology, 11; 397-409.
  • Malagnoux M (2007). Arid land forests of the world: global environmental perspectives. In, International Conference on Afforestation and Sustainable Forests as a Means to Combat Desertification, Jerusalem, Israel, pp. 16-19.
  • Meehan TD, Drumm PK, Schottland Farrar R, Oral K, Lanier KE, Pennington EA, Pennington LA, Stafurik IT, Valore DV, Wylie AD (2006). Energetic equivalence in a soil arthropod community from an aspen–conifer forest. Pedobiologia, 50; 307-312.
  • Quadros AF, Caubet Y, Araujo PB (2009). Life history comparison of two terrestrial isopods in relation to habitat specialization. Acta Oecologica, 35; 243-249.
  • Salmon S, Mantel J, Frizzera L, Zanella A (2006). Changes in humus forms and soil animal communities in two developmental phases of Norway spruce on an acidic substrate. Forest ecology and management, 237; 47-56.
  • Shannon C, Weaver W (1949). The Mathematical Theory of Communication. University of Illinois Pres: Urbana.
  • Shekhawat NS, Phulwaria M, Rai MK, Kataria V, Shekhawat S, Gupta AK, Rathore NS, Vyas M, Rathore N, Vibha J (2012). Bioresearches of fragile ecosystem/desert. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 82; 319-334.
  • Šmilauer P, Lepš J (2014). Multivariate analysis of ecological data using CANOCO. Cambridge University Press: U.K.
  • SPSS (2003). SPSS Base 12.0 user’s guide. SPSS Inc.: Chicago.
  • Turan ES (2018). Türkiye'nin iklim değişikliğine bağlı kuraklık durumu. Journal of Natural Hazards and Environment, 4; 63-69.
  • Villarreal-Rosas J, Palacios-Vargas JG, Maya Y (2014). Microarthropod communities related with biological soil crusts in a desert scrub in northwestern Mexico. Revista Mexicana de Biodiversidad, 85; 513-522.
  • Wiwatwitaya D, Takeda H (2005). Seasonal changes in soil arthropod abundance in the dry evergreen forest of north-east Thailand, with special reference to collembolan communities. Ecological Research, 20; 59-70.
  • Wolters V, Silver WL, Bignell DE, Coleman DC, Lavelle P, Van Der Putten WH, De Ruiter P, Rusek J, Wall DH, Wardle DA (2000). Effects of global changes on above-and belowground biodiversity in terrestrial ecosystems: implications for ecosystem functioning. BioScience, 50; 1089-1098.

The Effect of Shrubs Species on Soil Biodiversity in Steppe-Forest Transition Zone

Year 2018, Volume: 20 Issue: 3, 583 - 589, 15.12.2018

Abstract

In the arid ecosystems formed by vegetation,
shrub and herbaceous species, the activities of the soil fauna lead to the
formation of many important ecosystem processes. In arid areas, diversity of
microarthropods are more abundant especially under patchy vegetation, under
shrub species, and in biological soil crust by comparison to the non-plant
covered area. In this study, it was aimed to determine the effects of oak (Quercus pubescens Willd.) and almond (Amygdalus orientalis Mill.) shrub
species on abundance and diversity of soil microarthropods. For this purpose, 5
oaks and 5 almond shrubs were selected and 5 control areas without shrub
species were sampled. Microarthropods were collected by a soil core (5 cm
diameter, 5 cm length) from each subplot. The abundance of microarthropods
showed temporal and spatial changes. Collembola and Acarina taxa are composed
of 97 % in oak, 93 % in almond and 97% in the control area. The highest total
abundance was found in 31,179 inv.m-2 in oak. The total number of
microarthropods in almond and control areas is 75 % and 69 % less than that of
the oak respectively. The soil humidity and pH were the most important factor
determining distribution, abundance, and survival of soil microarthropods in
this semi-arid Steppe-Forest Transition Zone.

References

  • Bardgett R, Hopkins D, Usher M. (2005). Biological diversity and function in soils. Cambridge University Press: UK.
  • Bei-Bienko GY, Blagoveshchenskii DI, Chernova OA, Datsig EM, Emel'yanov AF, Kerzhner IM, Loginova MM, Martynova EF (1967). Keys to Insects of the European USSR. Akademiya Nauk: USSR.
  • Bird SB, Coulson RN, Fisher RF (2004). Changes in soil and litter arthropod abundance following tree harvesting and site preparation in a loblolly pine (Pinus taeda L.) plantation. Forest Ecology and Management., 202; 195-208.
  • Cakir M, Makineci E (2013). Humus characteristics and seasonal changes of soil arthropod communities in a natural sessile oak (Quercus petraea L.) stand and adjacent Austrian pine (Pinus nigra Arnold) plantation. Environmental Monitoring and Assessment, 185; 8943-8955.
  • Christiansen K (1964). Bionomics of collembola. Annual Review of Entomology, 9; 147-178.
  • Coleman DC, Crossley DA, Hendrix PF (2004). Fundamentals of soil ecology. Academic press: USA.
  • Çakır F, Bozkuş F (2017). Çankırı Yöresi Ormandan Stebe Geçiş Kuşağındaki Meşcere Kuruluş Özellikleri. Anadolu Orman Araştırmaları Dergisi, 3; 111-121.
  • Çakır M (2013). Toprak Eklembacaklılarının, Kayın ve Meşe Ekosistemindeki Mevsimsel Değişimi ve Ölü Örtü Ayrışmasına Etkileri. Ph.D., Institute of Science and Technology, PhD thesis, Istanbul University, Science Institute (in Turkish, with English summary). İstanbul.
  • Çakır M (2017). Kurak Ekosistemlerde Toprak Faunasının Önemi. Anatolian Journal of Forest Research, 3; 67-78.
  • Çakır M, Makineci E (2012). Toprak faunası: sınıflandırılması ve besin ağındaki yeri. İ.Ü. Orman Fakültesi Dergisi, 61; 43-55.
  • Çakır M, Makineci E (2018). Community structure and seasonal variations of soil microarthropods during environmental changes. Applied Soil Ecology, 123; 313-317.
  • Çetik R (1985). Türkiye Vejetasyonu I: İç Anadolu’nun Vejetasyonu ve Ekolojisi. Selçuk Üniversitesi Yayınları: Konya.
  • Dindal DL (1990). Soil biology guide. Wiley: New York.
  • Frouz J, Keplin B, Pizl V, Tajovskı K, Starı J, Lukesova A, Nováková A, Hánel L, Materna J, Düker C (2001). Soil biota and upper soil layer development in two contrasting post-mining chronosequences. Ecological engineering, 17; 275-284.
  • Irmler U (2006). Climatic and litter fall effects on collembolan and oribatid mite species and communities in a beech wood based on a 7 years investigation. European Journal of Soil Biology, 42; 51-62.
  • Joo SJ, Yim MH, Nakane K (2006). Contribution of microarthropods to the decomposition of needle litter in a Japanese cedar (Cryptomeria japonica D. Don) plantation. Forest ecology and management, 234; 192-198.
  • Karaöz MÖ (1989). Toprakların bazı kimyasal özelliklerinin (pH, karbonat, tuzluluk, organik madde, total azot, yararlanılabilir fosfor) analiz yöntemleri. Journal of the Faculty of Forestry Istanbul University, 39; 64-82.
  • Kautz T, López-Fando C, Ellmer F (2006). Abundance and biodiversity of soil microarthropods as influenced by different types of organic manure in a long-term field experiment in Central Spain. Applied Soil Ecology, 33; 278-285.
  • Krantz GW (1978). A manual of acarology (2nd edition). Oregon St Univ Bookstores: Corvallis.
  • Lalley J, Viles H, Henschel, J, Lalley V (2006). Lichen-dominated soil crusts as arthropod habitat in warm deserts. Journal of Arid Environments, 67; 579-593.
  • Liu R, Zhu F, Steinberger Y (2016). Changes in ground-dwelling arthropod diversity related to the proximity of shrub cover in a desertified system. Journal of Arid Environments, 124; 172-179.
  • Longcore T. (2003). Terrestrial arthropods as indicators of ecological restoration success in coastal sage scrub (California, USA). Restoration Ecology, 11; 397-409.
  • Malagnoux M (2007). Arid land forests of the world: global environmental perspectives. In, International Conference on Afforestation and Sustainable Forests as a Means to Combat Desertification, Jerusalem, Israel, pp. 16-19.
  • Meehan TD, Drumm PK, Schottland Farrar R, Oral K, Lanier KE, Pennington EA, Pennington LA, Stafurik IT, Valore DV, Wylie AD (2006). Energetic equivalence in a soil arthropod community from an aspen–conifer forest. Pedobiologia, 50; 307-312.
  • Quadros AF, Caubet Y, Araujo PB (2009). Life history comparison of two terrestrial isopods in relation to habitat specialization. Acta Oecologica, 35; 243-249.
  • Salmon S, Mantel J, Frizzera L, Zanella A (2006). Changes in humus forms and soil animal communities in two developmental phases of Norway spruce on an acidic substrate. Forest ecology and management, 237; 47-56.
  • Shannon C, Weaver W (1949). The Mathematical Theory of Communication. University of Illinois Pres: Urbana.
  • Shekhawat NS, Phulwaria M, Rai MK, Kataria V, Shekhawat S, Gupta AK, Rathore NS, Vyas M, Rathore N, Vibha J (2012). Bioresearches of fragile ecosystem/desert. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 82; 319-334.
  • Šmilauer P, Lepš J (2014). Multivariate analysis of ecological data using CANOCO. Cambridge University Press: U.K.
  • SPSS (2003). SPSS Base 12.0 user’s guide. SPSS Inc.: Chicago.
  • Turan ES (2018). Türkiye'nin iklim değişikliğine bağlı kuraklık durumu. Journal of Natural Hazards and Environment, 4; 63-69.
  • Villarreal-Rosas J, Palacios-Vargas JG, Maya Y (2014). Microarthropod communities related with biological soil crusts in a desert scrub in northwestern Mexico. Revista Mexicana de Biodiversidad, 85; 513-522.
  • Wiwatwitaya D, Takeda H (2005). Seasonal changes in soil arthropod abundance in the dry evergreen forest of north-east Thailand, with special reference to collembolan communities. Ecological Research, 20; 59-70.
  • Wolters V, Silver WL, Bignell DE, Coleman DC, Lavelle P, Van Der Putten WH, De Ruiter P, Rusek J, Wall DH, Wardle DA (2000). Effects of global changes on above-and belowground biodiversity in terrestrial ecosystems: implications for ecosystem functioning. BioScience, 50; 1089-1098.
There are 34 citations in total.

Details

Primary Language Turkish
Journal Section Biodiversity, Environmental Management and Policy, Sustainable Forestry
Authors

Meriç Çakır

Mert Tanı

Tuğba Tunç This is me

Publication Date December 15, 2018
Published in Issue Year 2018 Volume: 20 Issue: 3

Cite

APA Çakır, M., Tanı, M., & Tunç, T. (2018). Bozkır-Orman Geçiş Kuşağındaki Çalı Türlerinin Toprak Biyoçeşitliliğine Etkisi. Bartın Orman Fakültesi Dergisi, 20(3), 583-589.


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Fax: +90 (378) 223 5077, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com