Research Article
BibTex RIS Cite

Göknar-Kayın Karışık Meşceresi Altındaki Ölü Örtü Örneklerinde Mikrobiyal Biyokütle C(Cmic), N(Nmic) ve P(Pmic)'un Mevsimsel Değişimi

Year 2020, Volume: 22 Issue: 3, 993 - 1003, 15.12.2020
https://doi.org/10.24011/barofd.767681

Abstract

Toprak içerisinde meydana gelen bütün olaylara aracılık eden toprak mikroorganizmaları, aynı zamanda toprak organik maddesinde meydana gelen değişikliklerin de hassas bir göstergesidir (indikatörüdür). Çalışma alanı olarak Bartın ili Arıt ilçesinde yayılış gösteren göknar-kayın karışık meşceresi seçilmiştir. Çalışmada meşcereye ait ölü örtülerin mikrobiyal biyokütle C, N ve P içeriklerini mevsimlere göre belirlemek hedeflenmiştir. Çalışmanın materyal kısmını meşcerenin altından alınan ölü örtü örnekleri (20x20 cm’lik alandan) oluşturmaktadır. Örneklerin bazı kimyasal ve mikrobiyal analizleri için 2009 yılı içerisinde ilkbahar, yaz, sonbahar ve kış mevsimlerinde 15’er adet ölü örtü örneği alınmıştır. Ölü örtü örneklerinin mikrobiyal biyokütle C, N ve P içerikleri kloroform-fumigasyon-ekstraksiyon yöntemine göre belirlenmiştir. Örneklerinin ortalama pH değeri en düşük yaz mevsiminde (6,49), en yüksek kış mevsiminde (6,96) tespit edilmiştir. Örneklerinin en düşük organik C (Corg) içeriği yaz mevsiminde (% 18,1) ve en yüksek ilkbahar mevsiminde (% 36,8) ortaya çıkmıştır. Ölü örtü örneklerinin ortalama en yüksek mikrobiyal biyokütle C (Cmic) içeriği sonbahar mevsiminde (5492,30 µg g-1), mikrobiyal biyokütle N (Nmic) içeriği ise en yüksek yaz mevsiminde (715,23 µg g-1) belirlenmiştir. Bununla birlikte araştırma alanında ortalama en düşük mikrobiyal biyokütle P (Pmic) içeriği sonbahar mevsiminde 370,71 µg g-1 olarak tespit edilmiştir. Basit varyans analizi sonuçlarına göre, ölü örtü örneklerinin bazı kimyasal özellikleri (nem, pH ve organik C vb.) ile mikrobiyal biyokütle C, N ve P içerikleri mevsimlere göre değişiklik göstermektedir.

Thanks

Bu çalışma, birinci yazar tarafından hazırlanan doktora tezinden üretilmiştir. Bu vesile ile bu çalışmanın gerçekleştirilmesinde emeği geçen herkese, çalışmam boyunca benden bir an olsun yardımlarını esirgemeyen ve beni cesaretlendiren eşim Tûba BOLAT’a ve bu günlere gelmemde her türlü maddi ve manevi desteklerini esirgemeyen ve her zaman yanımda hissettiğim aileme sonsuz teşekkürlerimi sunarım.

References

  • Altunışık, R., Çoşkun, R. Yıldırım, E., Bayraktaroğlu, S. (2002). Sosyal Bilimlerde Araştırma Yöntemleri SPSS Uygulamalı, Geliştirilmiş 2. Basım, Sakarya Kitapevi, Sakarya Üniversitesi, İ.İ.B.F., Sakarya, 281 sayfa.
  • Anderson, J. P. E., Domsch, K. H. (1973). Quantification of bacterial and fungal contribution to soil respiration. Archives of Microbiology, 93, 113–127.
  • Anderson, J. M., Ingram, J. S. I. (1996). Tropical Soil Biology and Fertility A Handbook of Methods, Second Edition, Cab International Wallingford, UK, pp. 221.
  • Bauhus, J., Khanna, P. K. (1999). The significance of microbial biomass in forest soils. In Going Underground - Ecological Studies in Forest Soils Eds. Rastin, N., Bauhus, J., Research Signpost, Trivandrum, India, pp. 77–110.
  • Bargali, K., Manral, V., Padalia, K., Bargali, S. S., Upadhyay, V. P. (2018). Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India. Catena, 171, 125–135.
  • Brady, N. C. (1990). The Nature and Properties of Soils. 10th Ed. New York: Macmillan, 621 pp.
  • Brookes, P. C., Landman, A., Pruden, G., Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: A rapid extraction metod to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17, 837–842.
  • Brookes, P. C., Powlson, D. S., Jenkinson, D. S. (1982). Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry, 14, 319–329.
  • Burges, A. (1958). Micro-organism in The Soil. Hutchinson and Co Ltd, London, 188 pp.
  • Çepel, N. (1995). Orman Ekolojisi. İÜ Toprak İlmi ve Ekoloji Anabilim Dalı, Üniversite Yayın No. 3886, Sosyal BMYO, Yayın No: 433, İstanbul, 536 s.
  • Çepel, N. (1996). Toprak İlmi. İÜ Yayın No 3945, Orman Fakültesi Yayın No: 438, 288 s.
  • Chen, C. R., Condron, L. M., Davis, M. R., Sherlock, R. R. (2003). Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. Forest Ecology and Management, 177, 539–557.
  • Cleveland, C. C., Townsend, A. R., Constance, B. C., Ley, R. E., Steven, K. S. (2004). Soil microbial dynamics in Costa Rica: seasonal and biogeochemical constraints. Biotropica, 36 (2), 184–195.
  • Erinç, S. (1984). Klimatoloji ve Metodları. İÜ Yayın No. 3278, Deniz Bilimleri ve Coğrafya Enstitüsü Yayın No. 2, İstanbul. 454 s.
  • Gregorich, E. G., Carter, M. R., Angers, D. A., Monreal, C. M., Ellert, B. H. (1994). Towards a minimum data set to assess soil organic matter quality in agricultural soils. Canadian Journal of Soil Science, 74, 367–385.
  • Gülçur, F. (1974). Toprağın Fiziksel ve Kimyasal Analiz Metodları. Kutulmuş Matbaası, İÜ Yayın No. 1970, Orman Fakültesi Yayın No. 201, İstanbul, 225 s.
  • Hedley, M. J., White, R.E., Nye, P. H. (1982). Plant-induced changes in the rhizosphere of rape (Brassica napus var. emerald) seedlings. III. Changes in L value, soil phosphate fractions and phosphatase activity. New Phytologist, 91, 45–56.
  • Irmak, A. (1972). Toprak İlmi. İkinci baskı, İÜ Yayın No: 1268, Orman Fakültesi Yayın No: 121, Taş Matbaası, İstanbul, 299 sayfa.
  • Jenkinson, D. S., Ladd, J. N. (1981). Microbial Biomass in Soil Measurement and Turnover. In: Soil Biochemistry, eds. EA Paul and JN Ladd, Volume 5, Marcel Dekker, Inc, New York and Basel, pp. 415–471.
  • Kacar, B. (1996). Bitki ve Toprağın Kimyasal Analizleri, III. Toprak Analizleri. AÜ Ziraat Fak. Eğitim, Araştırma ve Geliştirme Vakfı Yayınları No: 3, Ankara, 705 s.
  • Kantarcı, M. D. (2000). Toprak İlmi, İstanbul Üniversitesi Toprak İlmi ve Ekoloji Anabilim Dalı, İstanbul Üniversitesi Yayın No. 4261, Orman Fakültesi Yayın No. 462, İstanbul, 420 s.
  • Karaöz, M. Ö. (1992). Yaprak ve Ölü Örtü Analiz Yöntemleri. İÜ Orman Fakültesi Dergisi, Seri B, 42 (1-2), 57-71.
  • Kramer, S., Green, D. M. (2000). Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biology and Biochemistry, 32, 179–188.
  • Lorenz, M., Thiele-Bruhn, S. (2019). Tree species affect soil organic matter stocks and stoichiometry in interaction with soil microbiota. Geoderma, 353, 35–46.
  • M. G. M. (2009). Meteoroloji Genel Müdürlüğü Bartın Meteoroloji İstasyonu 1975–2009 Yılları İklim Verileri, Ankara.
  • Moore, J. M., Klose, S., Tabatabai, M. A. (2000). Soil microbial biomass carbon and nitrogen as affected by cropping system. Biology and Fertility of Soils, 31, 200–210.
  • O. G. M. (2001). Bartın Orman İşletme Müdürlüğü Arıt Orman İşletme Şefliği Arıt Serisi Münferit Orman Amenajman Planı, Bartın (2001-2010). Olsen, S. R., Cole, C.V., Watanabe, F. S., Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular 939, United States Department of Agriculture, Washington DC, pp 1-19.
  • Özbek, H., Kaya, Z., Gök, M., Kaptan, H. (2001). Toprak Bilimi. ÇÜ Ziraat Fakültesi Genel Yayın No 73, Ders Kitapları Yayın No A-16, 5. Baskı, Adana, 816 s.
  • Özdamar, K. (1999). Paket Programları ile İstatistiksel Veri Analizi SPSS MINITAP, İkinci Baskı, Kaan Kitapevi, Eskişehir, 689 sayfa.
  • Özyuvacı, N. (1999). Meteoroloji ve Klimatoloji. İÜ Yayın No. 4196, Orman Fakültesi Yayın No. 460, İstanbul, 369 s.
  • Parkinson, D., Coleman, D. C. (1991). Microbial communities, activity and biomass. Agriculture, Ecosystems and Environment, 34, 3–33.
  • Singh, S., Singh, J. S. (1995). Microbial biomass associated with water-stable aggregates in forest, savanna and cropland soils of a seasonally dry tropical region, India. Soil Biology and Biochemistry, 27, 1027–1033.
  • Sparling, G. P., Hart, P. B. S., August, J. A., Leslie, D. M. (1994). A comparison of soil and microbial carbon, nitrogen and phosphorus contents, and macro-aggregate stability of a soil under native forest and after clearance for pastures and plantation forest. Biology and Fertility of Soils, 17, 91–100.
  • Tunlid, A., White, D. C. (1992). Biochemical analysis, community structure, nutritional status and metabolic activity of microbial communities in soil. In Soil Biochemistry, Eds. Stotzky, G., Bollag, J. M., Volume 7. Marcel Dekker, New York, pp 229–262.
  • Vance, E. D., Brookes, P. C., Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707.
  • Walkley, A., Black, A. I. (1934). An examination of the Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.
  • Zederer, D. P., Talkner U., Spohn, M., Joergensen, R. G. (2017). Microbial biomass phosphorus and C/N/P stoichiometry in forest floor and A horizons as affected by tree species. Soil Biology and Biochemistry, 111, 166–175.
  • Zogg, G. P., Zak, D. R., Ringelberg, D. B., MacDonald, N. W., Pregitzer, K. S., White, D. C. (1997). Compositional and functional shifts in microbial communities related to soil warming. Soil Science Society of America Journal, 61, 475–481.
  • Zou, X., Binkley, D., Caldwell, B. A. (1995). Effects of dinitrogen fixing trees on phosphorus biogeochemical cycling in contrasting forests. Soil Science Society of America Journal, 5

Seasonal Change of Microbial Biomass C (Cmic), N (Nmic) and P (Pmic) in Forest Floor Samples under Fir-Beech Mixed Stand

Year 2020, Volume: 22 Issue: 3, 993 - 1003, 15.12.2020
https://doi.org/10.24011/barofd.767681

Abstract

Soil microorganisms, which mediate all events happening in the soil, are also a sensitive indicator of the changes occurring in soil organic matter. Fir-beech mixed stand located in the Arıt district of Bartın province is chosen as the study area. In this study, it is aimed to determine microbial biomass C, N and P contents according to seasons. The material part of the study consists of forest floor samples (20x20 cm area) taken under the stand. For some chemical and microbial analyzes of forest floor samples, 15 forest floor samples (total 120 samples) were taken in the spring, summer, autumn and winter seasons. Microbial biomass C, N and P contents of forest floor samples were determined by chloroform-fumigation-extraction method. The average pH of the forest floor samples is shown in the lowest summer season (6.49), the highest winter season (6.96). The lowest organic C (Corg) content of the samples is observed in summer (18.1%) season and the highest spring season (36.8%). The highest microbial biomass C (Cmic) content of the forest floor samples is determined in the autumn season (5492.30 µg g-1) and the highest microbial biomass N (Nmic) content is detected in the summer season (715.23 µg g-1). In addition, the lowest microbial biomass P (Pmic) content in the study area is found as 370.71 µg g-1 in the autumn season. According to the results of the simple variance analysis (One-Way ANOVA), some chemical properties (moisture, pH and organic C, etc.) and microbial biomass C, N and P contents of forest floor samples are varied with the seasons.

References

  • Altunışık, R., Çoşkun, R. Yıldırım, E., Bayraktaroğlu, S. (2002). Sosyal Bilimlerde Araştırma Yöntemleri SPSS Uygulamalı, Geliştirilmiş 2. Basım, Sakarya Kitapevi, Sakarya Üniversitesi, İ.İ.B.F., Sakarya, 281 sayfa.
  • Anderson, J. P. E., Domsch, K. H. (1973). Quantification of bacterial and fungal contribution to soil respiration. Archives of Microbiology, 93, 113–127.
  • Anderson, J. M., Ingram, J. S. I. (1996). Tropical Soil Biology and Fertility A Handbook of Methods, Second Edition, Cab International Wallingford, UK, pp. 221.
  • Bauhus, J., Khanna, P. K. (1999). The significance of microbial biomass in forest soils. In Going Underground - Ecological Studies in Forest Soils Eds. Rastin, N., Bauhus, J., Research Signpost, Trivandrum, India, pp. 77–110.
  • Bargali, K., Manral, V., Padalia, K., Bargali, S. S., Upadhyay, V. P. (2018). Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India. Catena, 171, 125–135.
  • Brady, N. C. (1990). The Nature and Properties of Soils. 10th Ed. New York: Macmillan, 621 pp.
  • Brookes, P. C., Landman, A., Pruden, G., Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: A rapid extraction metod to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17, 837–842.
  • Brookes, P. C., Powlson, D. S., Jenkinson, D. S. (1982). Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry, 14, 319–329.
  • Burges, A. (1958). Micro-organism in The Soil. Hutchinson and Co Ltd, London, 188 pp.
  • Çepel, N. (1995). Orman Ekolojisi. İÜ Toprak İlmi ve Ekoloji Anabilim Dalı, Üniversite Yayın No. 3886, Sosyal BMYO, Yayın No: 433, İstanbul, 536 s.
  • Çepel, N. (1996). Toprak İlmi. İÜ Yayın No 3945, Orman Fakültesi Yayın No: 438, 288 s.
  • Chen, C. R., Condron, L. M., Davis, M. R., Sherlock, R. R. (2003). Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. Forest Ecology and Management, 177, 539–557.
  • Cleveland, C. C., Townsend, A. R., Constance, B. C., Ley, R. E., Steven, K. S. (2004). Soil microbial dynamics in Costa Rica: seasonal and biogeochemical constraints. Biotropica, 36 (2), 184–195.
  • Erinç, S. (1984). Klimatoloji ve Metodları. İÜ Yayın No. 3278, Deniz Bilimleri ve Coğrafya Enstitüsü Yayın No. 2, İstanbul. 454 s.
  • Gregorich, E. G., Carter, M. R., Angers, D. A., Monreal, C. M., Ellert, B. H. (1994). Towards a minimum data set to assess soil organic matter quality in agricultural soils. Canadian Journal of Soil Science, 74, 367–385.
  • Gülçur, F. (1974). Toprağın Fiziksel ve Kimyasal Analiz Metodları. Kutulmuş Matbaası, İÜ Yayın No. 1970, Orman Fakültesi Yayın No. 201, İstanbul, 225 s.
  • Hedley, M. J., White, R.E., Nye, P. H. (1982). Plant-induced changes in the rhizosphere of rape (Brassica napus var. emerald) seedlings. III. Changes in L value, soil phosphate fractions and phosphatase activity. New Phytologist, 91, 45–56.
  • Irmak, A. (1972). Toprak İlmi. İkinci baskı, İÜ Yayın No: 1268, Orman Fakültesi Yayın No: 121, Taş Matbaası, İstanbul, 299 sayfa.
  • Jenkinson, D. S., Ladd, J. N. (1981). Microbial Biomass in Soil Measurement and Turnover. In: Soil Biochemistry, eds. EA Paul and JN Ladd, Volume 5, Marcel Dekker, Inc, New York and Basel, pp. 415–471.
  • Kacar, B. (1996). Bitki ve Toprağın Kimyasal Analizleri, III. Toprak Analizleri. AÜ Ziraat Fak. Eğitim, Araştırma ve Geliştirme Vakfı Yayınları No: 3, Ankara, 705 s.
  • Kantarcı, M. D. (2000). Toprak İlmi, İstanbul Üniversitesi Toprak İlmi ve Ekoloji Anabilim Dalı, İstanbul Üniversitesi Yayın No. 4261, Orman Fakültesi Yayın No. 462, İstanbul, 420 s.
  • Karaöz, M. Ö. (1992). Yaprak ve Ölü Örtü Analiz Yöntemleri. İÜ Orman Fakültesi Dergisi, Seri B, 42 (1-2), 57-71.
  • Kramer, S., Green, D. M. (2000). Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biology and Biochemistry, 32, 179–188.
  • Lorenz, M., Thiele-Bruhn, S. (2019). Tree species affect soil organic matter stocks and stoichiometry in interaction with soil microbiota. Geoderma, 353, 35–46.
  • M. G. M. (2009). Meteoroloji Genel Müdürlüğü Bartın Meteoroloji İstasyonu 1975–2009 Yılları İklim Verileri, Ankara.
  • Moore, J. M., Klose, S., Tabatabai, M. A. (2000). Soil microbial biomass carbon and nitrogen as affected by cropping system. Biology and Fertility of Soils, 31, 200–210.
  • O. G. M. (2001). Bartın Orman İşletme Müdürlüğü Arıt Orman İşletme Şefliği Arıt Serisi Münferit Orman Amenajman Planı, Bartın (2001-2010). Olsen, S. R., Cole, C.V., Watanabe, F. S., Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular 939, United States Department of Agriculture, Washington DC, pp 1-19.
  • Özbek, H., Kaya, Z., Gök, M., Kaptan, H. (2001). Toprak Bilimi. ÇÜ Ziraat Fakültesi Genel Yayın No 73, Ders Kitapları Yayın No A-16, 5. Baskı, Adana, 816 s.
  • Özdamar, K. (1999). Paket Programları ile İstatistiksel Veri Analizi SPSS MINITAP, İkinci Baskı, Kaan Kitapevi, Eskişehir, 689 sayfa.
  • Özyuvacı, N. (1999). Meteoroloji ve Klimatoloji. İÜ Yayın No. 4196, Orman Fakültesi Yayın No. 460, İstanbul, 369 s.
  • Parkinson, D., Coleman, D. C. (1991). Microbial communities, activity and biomass. Agriculture, Ecosystems and Environment, 34, 3–33.
  • Singh, S., Singh, J. S. (1995). Microbial biomass associated with water-stable aggregates in forest, savanna and cropland soils of a seasonally dry tropical region, India. Soil Biology and Biochemistry, 27, 1027–1033.
  • Sparling, G. P., Hart, P. B. S., August, J. A., Leslie, D. M. (1994). A comparison of soil and microbial carbon, nitrogen and phosphorus contents, and macro-aggregate stability of a soil under native forest and after clearance for pastures and plantation forest. Biology and Fertility of Soils, 17, 91–100.
  • Tunlid, A., White, D. C. (1992). Biochemical analysis, community structure, nutritional status and metabolic activity of microbial communities in soil. In Soil Biochemistry, Eds. Stotzky, G., Bollag, J. M., Volume 7. Marcel Dekker, New York, pp 229–262.
  • Vance, E. D., Brookes, P. C., Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707.
  • Walkley, A., Black, A. I. (1934). An examination of the Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.
  • Zederer, D. P., Talkner U., Spohn, M., Joergensen, R. G. (2017). Microbial biomass phosphorus and C/N/P stoichiometry in forest floor and A horizons as affected by tree species. Soil Biology and Biochemistry, 111, 166–175.
  • Zogg, G. P., Zak, D. R., Ringelberg, D. B., MacDonald, N. W., Pregitzer, K. S., White, D. C. (1997). Compositional and functional shifts in microbial communities related to soil warming. Soil Science Society of America Journal, 61, 475–481.
  • Zou, X., Binkley, D., Caldwell, B. A. (1995). Effects of dinitrogen fixing trees on phosphorus biogeochemical cycling in contrasting forests. Soil Science Society of America Journal, 5
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Forest Industry Engineering
Journal Section Biodiversity, Environmental Management and Policy, Sustainable Forestry
Authors

İlyas Bolat 0000-0002-5354-2968

Ömer Kara 0000-0002-7787-7463

Metin Tunay 0000-0002-6065-0393

Publication Date December 15, 2020
Published in Issue Year 2020 Volume: 22 Issue: 3

Cite

APA Bolat, İ., Kara, Ö., & Tunay, M. (2020). Göknar-Kayın Karışık Meşceresi Altındaki Ölü Örtü Örneklerinde Mikrobiyal Biyokütle C(Cmic), N(Nmic) ve P(Pmic)’un Mevsimsel Değişimi. Bartın Orman Fakültesi Dergisi, 22(3), 993-1003. https://doi.org/10.24011/barofd.767681


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Fax: +90 (378) 223 5077, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com