Research Article
BibTex RIS Cite

Properties of Gypsum Boards Made with Cedrus Tree (Cedrus libani) Components. Part 2. Chemical and Technological Properties

Year 2022, Volume: 24 Issue: 2, 202 - 210, 15.08.2022
https://doi.org/10.24011/barofd.1068066

Abstract

In this study, the variation of cedrus tree parts and gypsum during experimental panel manufacturing have been evaluated. The burning pattern on the surface of all test boards produced by adding cedrus’s tree components (wood, bark, cone and needle) as reinforcement fillers to the gypsum structure did not reach the threshold limit of 150 mm that specified in the standard value as ISO 11925-2 standard but only limi-ted spreading of char was observed. It was also found that cone looks like create better barrier against heat compare to needle, wood and bark in similar proportions with gypsum. In contrary, although bark could be absorbed and barrier to heat better than others but it may not support flammability that are not support to mass lost when subject to burning. Some chemical changes occurred in main constituents of lignocellu-losic substances in water/gypsum mixture as evidence with FTIR spectrums. It has also realized that bark (SKa6), cone (Sko6), and needle (SI6) in gypsum negative impact on thermal degradation that higher tempe-rature for decomposition compare to wood-based board (Ska1) at similar experimental manufacturing conditions. It has clearly seen that content of fillers dramatically effects thermal stability of gypsum based boards.

References

  • Al Dabbas, M., Eisa, M. Y. and Kadhim, W. H. (2014). Estimation of gypsum-calcite percentages using Fourier transform infrared spectrophotometer (FTIR), in Alexandria Gypsiferous Soil-Iraq. Iraqi Journal of Science, 55(4B), 1916-1926.
  • Carvalho, M. A., Calil Júnior, C., Savastano Junior, H., Tubino, R. and Carvalho, M. T. (2008). Microstructure and mechanical properties of gypsum composites reinforced with recycled cellulose pulp. Materials Research, 11(4), 391-397.
  • Chieng, B.W., Ibrahim, N.A., Yunus, W.M.Z.W., and Hussein, M.Z.B. (2013). Effects of graphene nanopletelets on poly (lactic acid) /poly (ethylene glycol) polymer nanocomposites, Polymers. 6 (1), 93-104.
  • Çam, E. (2019). Investigation of the properties of gypsum composites produced from cedrus tree and its components, (Yüksek lisans tezi). Erişim adresi: https://tez.yok.gov.tr/UlusalTezMerkezi
  • Ding, Y., Ezekoye, O.A., Lu, S. and Wang, C. (2016). Thermal degradation of beech wood with thermogravimetry/fourier transform infrared analysis, Energy Conversion and Management. 120, 370-377.
  • Fengel, D and Wegener, G (1984). Wood: Chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin and New York. 613p. Herhández, O.F., Bollatti, M.R., Rio, M. and Landa, B.P. (1999). Development of cork-gypsum composites for building applications, Construction and Building Materials. 13, 179-186.
  • Iorio, M., Santarelli, M.L., Gonzalez-Gaitano, G. and Gonzalez-Benito, J. (2018). Surface modification and characterization of basalt fibers as potential reinforcement of concretes, Applied Surface Science. 427, 1248-1256.
  • Kaya, A. I. and Sahin, H. T. (2016). The effects of boric acid on fiberboard made from wood/secondary fiber mixtures: Part 3. Utilization of recycled waste office paper fibers. Chemical Science International Journal, 1-8.
  • Li, G., Yu, Y., Zhao, Z., Li, J. and Li, C. (2003). Properties study of cotton stalk fiber/gypsum composite. Cement and Concrete Research. 33(1), 43-46.
  • Sahin, H. T., Demir, I., andYalçın, Ö. Ü. (2019). Properties of gypsum boards made of mixtures of wood and rice straw. International Research Journal of Pure and Applied Chemistry, 1-10.
  • Sahin, H. T. and Arslan, M. B. (2008). A study on physical and chemical properties of cellulose paper immersed in various solvent mixtures. International Journal of Molecular Sciences. 9(1), 78-88.
  • Sahin, H. and Demir, I. (2019). Gypsum-based boards made from mixtures of waste cellulosic sources: Part 1. physical and mechanical properties. European Journal of Science and Technolog. (16), 567-576.
  • Sahin, H.T. and Cam, E. (2022). Properties of gypsum boards made with cedrus tree (cedrus libani) components. Part 1. Physical and mechanical properties, Journal of Bartin Faculty of Forestry. 24(1): 121-132.
  • Shiroma, L., Camarini, G. and Beraldo, A. L. (2016). Effect of wood particle treatment on the properties of gypsum plaster pastes and composites. Matéria (Rio de Janeiro), 21(4): 1032-1044.
  • Singh, M., and Garg, M. (1994). Gypsum-based fibre-reinforced composites: an alternative to timber. Construction and Building Materials. 8(3), 155-160.
  • Simatupang, M.H. and Geimer, R.L. 1990. Inorganic binder for wood composites: feasibility and limitations, Wood adhesive symposium proceedings, May 16-18, 1990, Madison, WI. pp. 169–176.
  • Sjostrom, E. (1981). Wood chemistry: Fundamentals and applications. Academic Press Inc., New York. 223 p.
  • Van Elten, G.J. (1996). Innovation in the production of cement-bonded particleboard and wood-wool cement board, 5th International Inorganic Bonded Wood and Fiber Composite Materials Conference. Spokane, Washington, USA.
  • Youngquist, J. A. (1999). Wood-based composites and panel products, In: Wood handbook: wood as an engineering material, USDA Forest Service, Forest Products Laboratory, General technical report FPL; GTR-113: Pp. 10.1-10.31.

Sedir Ağacının (Cedrus libani) Farklı Kısımlarından Üretilmiş Alçı Levhaların Özellikleri. 2. Bölüm. Kimyasal ve Teknolojik Özellikler

Year 2022, Volume: 24 Issue: 2, 202 - 210, 15.08.2022
https://doi.org/10.24011/barofd.1068066

Abstract

Öz-Bu çalışmada, sedir ağacının değişik kısımları ile alçı karışımından elde edilen deneysel levhalar üretilmiştir. Yanma deneylerinde, bütün sedir ağaç kısımların (odun, kozalak, kabuk, ibre) alçı yapısına ilave edilmesiyle üretilmiş deneysel panellerin yüzey yanma durumları, as ISO 11925-2 standardına göre 150 mm lik seviyeye ulaşmamış, sadece sınırlı bir yüzey yanma yayılımı gözlemlenmiştir. Ayrıca sedir kozalağı diğer ibre, odun ve kabuk karışımından üretilen alçı esaslı levhalara göre daha fazla engel oluşturduğu anlaşılmıştır. Bu duruma karşı olarak ise, kabuk daha fazla ısıyı absorpladığı ve daha iyi engel oluşturduğu gözlemlenmekle birlikte, yanma esnasında kütle kaybı üzerine olumlu etkisi gözlemlenememiştir. Lignoselülozik maddelerin (odun, kabuk, ibre, kozalak) su/alçı karışımı içerisinde bazı kimyasal değişimlere uğradığı FTIR analizleri ile gözlemlenmiştir. Benzer koşullarda üretilen kabuk (SKa6), kozalak (Sko6) ve ibre (SI6) ilavesinin alçı esaslı levhaların termal bozulması üzerine, odun esaslı levhalar göre (Ska1) negatif etki ettiği belirlenmiştir. Çalışmada alçı yapısına ilave edilen katkı maddelerinin alçı esaslı levhaların termal dayanım özellikleri üzerine etki ettiği belirlenmiştir.

References

  • Al Dabbas, M., Eisa, M. Y. and Kadhim, W. H. (2014). Estimation of gypsum-calcite percentages using Fourier transform infrared spectrophotometer (FTIR), in Alexandria Gypsiferous Soil-Iraq. Iraqi Journal of Science, 55(4B), 1916-1926.
  • Carvalho, M. A., Calil Júnior, C., Savastano Junior, H., Tubino, R. and Carvalho, M. T. (2008). Microstructure and mechanical properties of gypsum composites reinforced with recycled cellulose pulp. Materials Research, 11(4), 391-397.
  • Chieng, B.W., Ibrahim, N.A., Yunus, W.M.Z.W., and Hussein, M.Z.B. (2013). Effects of graphene nanopletelets on poly (lactic acid) /poly (ethylene glycol) polymer nanocomposites, Polymers. 6 (1), 93-104.
  • Çam, E. (2019). Investigation of the properties of gypsum composites produced from cedrus tree and its components, (Yüksek lisans tezi). Erişim adresi: https://tez.yok.gov.tr/UlusalTezMerkezi
  • Ding, Y., Ezekoye, O.A., Lu, S. and Wang, C. (2016). Thermal degradation of beech wood with thermogravimetry/fourier transform infrared analysis, Energy Conversion and Management. 120, 370-377.
  • Fengel, D and Wegener, G (1984). Wood: Chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin and New York. 613p. Herhández, O.F., Bollatti, M.R., Rio, M. and Landa, B.P. (1999). Development of cork-gypsum composites for building applications, Construction and Building Materials. 13, 179-186.
  • Iorio, M., Santarelli, M.L., Gonzalez-Gaitano, G. and Gonzalez-Benito, J. (2018). Surface modification and characterization of basalt fibers as potential reinforcement of concretes, Applied Surface Science. 427, 1248-1256.
  • Kaya, A. I. and Sahin, H. T. (2016). The effects of boric acid on fiberboard made from wood/secondary fiber mixtures: Part 3. Utilization of recycled waste office paper fibers. Chemical Science International Journal, 1-8.
  • Li, G., Yu, Y., Zhao, Z., Li, J. and Li, C. (2003). Properties study of cotton stalk fiber/gypsum composite. Cement and Concrete Research. 33(1), 43-46.
  • Sahin, H. T., Demir, I., andYalçın, Ö. Ü. (2019). Properties of gypsum boards made of mixtures of wood and rice straw. International Research Journal of Pure and Applied Chemistry, 1-10.
  • Sahin, H. T. and Arslan, M. B. (2008). A study on physical and chemical properties of cellulose paper immersed in various solvent mixtures. International Journal of Molecular Sciences. 9(1), 78-88.
  • Sahin, H. and Demir, I. (2019). Gypsum-based boards made from mixtures of waste cellulosic sources: Part 1. physical and mechanical properties. European Journal of Science and Technolog. (16), 567-576.
  • Sahin, H.T. and Cam, E. (2022). Properties of gypsum boards made with cedrus tree (cedrus libani) components. Part 1. Physical and mechanical properties, Journal of Bartin Faculty of Forestry. 24(1): 121-132.
  • Shiroma, L., Camarini, G. and Beraldo, A. L. (2016). Effect of wood particle treatment on the properties of gypsum plaster pastes and composites. Matéria (Rio de Janeiro), 21(4): 1032-1044.
  • Singh, M., and Garg, M. (1994). Gypsum-based fibre-reinforced composites: an alternative to timber. Construction and Building Materials. 8(3), 155-160.
  • Simatupang, M.H. and Geimer, R.L. 1990. Inorganic binder for wood composites: feasibility and limitations, Wood adhesive symposium proceedings, May 16-18, 1990, Madison, WI. pp. 169–176.
  • Sjostrom, E. (1981). Wood chemistry: Fundamentals and applications. Academic Press Inc., New York. 223 p.
  • Van Elten, G.J. (1996). Innovation in the production of cement-bonded particleboard and wood-wool cement board, 5th International Inorganic Bonded Wood and Fiber Composite Materials Conference. Spokane, Washington, USA.
  • Youngquist, J. A. (1999). Wood-based composites and panel products, In: Wood handbook: wood as an engineering material, USDA Forest Service, Forest Products Laboratory, General technical report FPL; GTR-113: Pp. 10.1-10.31.
There are 19 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials
Journal Section Research Articles
Authors

Halil Turgut Şahin 0000-0001-5633-6505

Esen Çam This is me

Publication Date August 15, 2022
Published in Issue Year 2022 Volume: 24 Issue: 2

Cite

APA Şahin, H. T., & Çam, E. (2022). Properties of Gypsum Boards Made with Cedrus Tree (Cedrus libani) Components. Part 2. Chemical and Technological Properties. Bartın Orman Fakültesi Dergisi, 24(2), 202-210. https://doi.org/10.24011/barofd.1068066


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Fax: +90 (378) 223 5077, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com