Research Article
BibTex RIS Cite

Evaluation of Marble Waste in Wood Plastic Composites Produced by Flat Pressing Method

Year 2022, Volume: 24 Issue: 2, 220 - 227, 15.08.2022
https://doi.org/10.24011/barofd.1084516

Abstract

In this study, the evaluation of marble wastes in the production of wood-plastic composites (WPCs) was evaluated. For this purpose, different ratios of marble waste (0, 10, 15, 20, 25, 30) were mixed with wood and plastic to produce WPCs by flat pressing method. The effects of marble waste on some physical and mechanical properties of WPCs were investigated. For this purpose, the WPCs' water absorption and thickness swelling values were examined. The decrease in the wood flour resulted with a better hydrophobic structure. Therefore, increasing marble waste improved the resistance to water absorption and thickness swelling properties significantly. On the contrary, marble wastes caused a decrease in mechanical properties. Reductions up to 26% and 38% occurred in flexural strength and screw withdrawal strength, respectively. The modulus of elasticity first decreased and then increased. The decrease in tensile strength, on the other hand, was more moderate. According to LOI test results, marble waste has also increased the flammability resistance.

References

  • Abdulla, R. and Majeed, N. (2021). Enhancing engineering properties of expansive soil using marble waste powder. The Iraqi Geological Journal, 54(1), 43-53. https://doi.org/10.46717/igj.54.1E.4Ms-2021-05-25
  • ASTM D 570-98 (2018). Standard Test Method for Water Absorption of Plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D790-17 (2017). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, PA, USA.
  • ASTM D 638-14 (2017). Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D 1037-12 (2020). Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials, ASTM International, West Conshohocken, PA, USA.
  • ASTM D 2863-19 (2019). Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index), ASTM International, West Conshohocken, PA, USA.
  • Ayrilmis, N., Benthien, J.T., Thoemen, H. and White, R.H. (2011). Properties of flat‐pressed wood plastic composites containing fire retardants. Journal of Applied Polymer Science, 122(5), 3201-3210. https://doi.org/10.1002/app.34346
  • Başyiğit, M. (2021). Can Google Trends improve the marble demand model: A case study of USA's marble demand from Turkey. Resources Policy, 72, 102073. https://doi.org/10.1016/j.resourpol.2021.102073
  • Bayraktar, O.Y., Kaplan, G., Gencel, O., Benli, A. and Sutcu, M. (2021). Physico-mechanical, durability and thermal properties of basalt fiber reinforced foamed concrete containing waste marble powder and slag. Construction and Building Materials, 288, 123128. https://doi.org/10.1016/j.conbuildmat.2021.123128
  • Benthien, J.T. and Thoemen, H. (2012). Effects of raw materials and process parameters on the physical and mechanical properties of flat pressed WPC panels. Composites Part A: Applied Science and Manufacturing, 43(4), 570-576. https://doi.org/10.1016/j.compositesa.2011.12.028
  • Bilgin, N., Yeprem, H.A., Arslan, S., Bilgin, A., Günay, E. and Marşoglu, M. (2012). Use of waste marble powder in brick industry. Construction and Building Materials, 29, 449-457. https://doi.org/10.1016/j.conbuildmat.2011.10.011
  • Çetin, T. (2003). Türkiye mermer potansiyeli, üretimi ve ihracatı. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 23(3), 243-256. Erişim adresi: https://dergipark.org.tr/en/download/article-file/77362
  • Chaharmahali, M., Tajvidi, M. and Najafi, S.K. (2008). Mechanical properties of wood plastic composite panels made from waste fiberboard and particleboard, Polymer Composites, 29(6), 606-610. https://doi.org/10.1002/pc.20434
  • Chen, H., He, H., Tian, S. and Chen, S. (2018). Recycling of waste artificial marble powder in HDPE‐wood composites. Polymer Composites, 39(7), 2347-2355. https://doi.org/10.1002/pc.24215
  • Clegg, D.W. and Collyer, A.A. (1986). Mechanical properties of reinforced thermoplastics. London and New York: Elsevier Applied Science Publishers LTD. https://link.springer.com/book/10.1007/978-94-009-4193-9?noAccess=true
  • Dundar, T., Ayrilmis, N., Akkus, M. and Ulay, G. (2016). Effect of the marble powder and wood powder content on the technological properties of thermoplastic composites. International Scientific Journal Machines. Technologies. Materials., 10(6), 13-16. Erişim adresi: https://stumejournals.com/journals/mtm/2016/6/13.full.pdf
  • FAO (2020). The State of the World's Forests 2020. Erişim adresi: https://www.fao.org/3/ca8642en/ca8642en.pdf
  • Guo, J., Tang, Y. and Xu, Z. (2010). Performance and thermal behavior of wood plastic composite produced by nonmetals of pulverized waste printed circuit boards, Journal of Hazardous Materials, 179(1-3), 203-207. https://doi.org/10.1016/j.jhazmat.2010.02.080
  • Kaçamer, Ö.G.S., Budakçı, M. and Kap, Ö.Ü.T. (2019). Odun Plastik Kompozit Malzeme Üretiminde Kullanılan Malzemelerle İlgili Türkiye’de Yapılan Çalışmalar. International Marmara Sciences and Social Sciences Congress, (pp. 526-534). Kocaeli, Turkey.
  • Karakuş, K. (2008). Üniversitemizdeki Polietilen ve Polipropilen Atıkların Polimer Kompozit Üretiminde Değerlendirilmesi (Yüksek Lisans Tezi). Erişim adresi: https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • Kim, J. K. and Pal, K. (2010). Recent advances in the processing of wood-plastic composites. London-New York: Springer. Erişim adresi: https://link.springer.com/book/10.1007/978-3-642-14877-4
  • Klyosov, A.A. (2007). Wood-plastic composites. New Jersey: John Wiley and Sons. Erişim adresi: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470165935
  • Mantia, F.L., Morreale, M. and Ishak, Z.M. (2005). Processing and mechanical properties of organic filler–polypropylene composites. Journal of applied polymer science, 96(5), 1906-1913. https://doi.org/10.1002/app.21623
  • Mohamed, M.A. (2021). An assessment of forest cover change and its driving forces in the syrian coastal region during a period of conflict, 2010 to 2020. Land, 10(2), 191. https://doi.org/10.3390/land10020191
  • Öztürk, M. (2018). Mermer kesiminden kaynaklanan çevre kirliliği ve önlemleri, Çevre ve Şehircilik Bakanlığı, Çevre ve Şehir Kütüphanesi. Ankara. Erişim adresi: http://www. cevresehirkutuphanesi. com/assets/files/slider_pdf/5mgT7FNMcjwz. pdf (11.05.2019).
  • Pamphlet, A.M.C. (1981). Engineering Design Handbook: Discontinuous Fiberglass Reinforced Thermoplastics. Alexandria: US Army Materiel Development and Readiness Command.
  • Rowell, R.M. (2012). Handbook of Wood Chemistry and Wood Composites. USA: CRC press. Erişim adresi: https://www.taylorfrancis.com/books/mono/10.1201/b12487/handbook-wood-chemistry-wood-composites-roger-rowell
  • Sözen, E., Aydemir, D. and Zor, M. (2017). The effects of lignocellulosic fillers on mechanical, morphological and thermal properties of wood polymer composites. Drvna industrija, 68(3), 195-204. https://doi.org/10.5552/drind.2017.1709
  • Sufian, M., Ullah, S., Ostrowski, K.A., Ahmad, A., Zia, A., Śliwa-Wieczorek, K. and Awan, A.A. (2021). An experimental and empirical study on the use of waste marble powder in construction material. Materials, 14(14), 3829. https://doi.org/10.3390/ma14143829
  • Zor M., Kiziltas, A., Wang. L. and Gardner, D.J. (2018). Heat treated wood-filled styrene maleic anhydride (SMA) copolymer composites. Kastamonu University Journal of Forestry Faculty, 18(2), 203-214. https://doi.org/10.17475/kastorman.371198

Mermer Atıklarının Düz Presleme Yöntemiyle Üretilen Odun Plastik Kompozitlerinde Değerlendirilmesi

Year 2022, Volume: 24 Issue: 2, 220 - 227, 15.08.2022
https://doi.org/10.24011/barofd.1084516

Abstract

Bu çalışmada, dünya rezervlerinin önemli bir kısmı ülkemizde olan mermer cevherinin işlenmesi sırasında ortaya çıkan atıkların odun plastik kompozitlerinin (OPK) üretiminde değerlendirilmesi incelenmiştir. Bu amaçla farklı oranlarda mermer atıkları (%0, 10, 15, 20, 25, 30) odun ve plastik ile karıştırılarak düz presleme yöntemiyle OPK üretimi gerçekleştirilmiştir. Mermer atıklarının OPK’nın bazı fiziksel ve mekanik özelliklerini nasıl etkilediği incelenmiştir. Bu amaçla levhaların su alma ve kalınlığa şişme değerine bakılmıştır. Odun unu oranının azalması hidrofobik karakterde bir yapının ortaya çıkmasını sağlamıştır. Böylece artan mermer atığı oranı su alma ve kalınlığa şişme değerlerini önemli oranda iyileştirmiştir. Bunun aksine mermer atıkları mekanik özelliklerin azalmasına neden olmuştur. Eğilme direnci ve vida tutma direnci değerlerinde sırasıyla %26 ve %38’e varan azalmalar meydana gelmiştir. Eğilmede elastikiyet modülü ise önce düşmüş ardından artışa geçmiştir. Çekme direnci değerlerinde meydana gelen kayıp ise daha düşük olmuştur. LOI test sonuçları mermer atıklarının yanma direncini arttırdığını göstermiştir.

References

  • Abdulla, R. and Majeed, N. (2021). Enhancing engineering properties of expansive soil using marble waste powder. The Iraqi Geological Journal, 54(1), 43-53. https://doi.org/10.46717/igj.54.1E.4Ms-2021-05-25
  • ASTM D 570-98 (2018). Standard Test Method for Water Absorption of Plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D790-17 (2017). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, PA, USA.
  • ASTM D 638-14 (2017). Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA, USA.
  • ASTM D 1037-12 (2020). Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials, ASTM International, West Conshohocken, PA, USA.
  • ASTM D 2863-19 (2019). Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index), ASTM International, West Conshohocken, PA, USA.
  • Ayrilmis, N., Benthien, J.T., Thoemen, H. and White, R.H. (2011). Properties of flat‐pressed wood plastic composites containing fire retardants. Journal of Applied Polymer Science, 122(5), 3201-3210. https://doi.org/10.1002/app.34346
  • Başyiğit, M. (2021). Can Google Trends improve the marble demand model: A case study of USA's marble demand from Turkey. Resources Policy, 72, 102073. https://doi.org/10.1016/j.resourpol.2021.102073
  • Bayraktar, O.Y., Kaplan, G., Gencel, O., Benli, A. and Sutcu, M. (2021). Physico-mechanical, durability and thermal properties of basalt fiber reinforced foamed concrete containing waste marble powder and slag. Construction and Building Materials, 288, 123128. https://doi.org/10.1016/j.conbuildmat.2021.123128
  • Benthien, J.T. and Thoemen, H. (2012). Effects of raw materials and process parameters on the physical and mechanical properties of flat pressed WPC panels. Composites Part A: Applied Science and Manufacturing, 43(4), 570-576. https://doi.org/10.1016/j.compositesa.2011.12.028
  • Bilgin, N., Yeprem, H.A., Arslan, S., Bilgin, A., Günay, E. and Marşoglu, M. (2012). Use of waste marble powder in brick industry. Construction and Building Materials, 29, 449-457. https://doi.org/10.1016/j.conbuildmat.2011.10.011
  • Çetin, T. (2003). Türkiye mermer potansiyeli, üretimi ve ihracatı. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 23(3), 243-256. Erişim adresi: https://dergipark.org.tr/en/download/article-file/77362
  • Chaharmahali, M., Tajvidi, M. and Najafi, S.K. (2008). Mechanical properties of wood plastic composite panels made from waste fiberboard and particleboard, Polymer Composites, 29(6), 606-610. https://doi.org/10.1002/pc.20434
  • Chen, H., He, H., Tian, S. and Chen, S. (2018). Recycling of waste artificial marble powder in HDPE‐wood composites. Polymer Composites, 39(7), 2347-2355. https://doi.org/10.1002/pc.24215
  • Clegg, D.W. and Collyer, A.A. (1986). Mechanical properties of reinforced thermoplastics. London and New York: Elsevier Applied Science Publishers LTD. https://link.springer.com/book/10.1007/978-94-009-4193-9?noAccess=true
  • Dundar, T., Ayrilmis, N., Akkus, M. and Ulay, G. (2016). Effect of the marble powder and wood powder content on the technological properties of thermoplastic composites. International Scientific Journal Machines. Technologies. Materials., 10(6), 13-16. Erişim adresi: https://stumejournals.com/journals/mtm/2016/6/13.full.pdf
  • FAO (2020). The State of the World's Forests 2020. Erişim adresi: https://www.fao.org/3/ca8642en/ca8642en.pdf
  • Guo, J., Tang, Y. and Xu, Z. (2010). Performance and thermal behavior of wood plastic composite produced by nonmetals of pulverized waste printed circuit boards, Journal of Hazardous Materials, 179(1-3), 203-207. https://doi.org/10.1016/j.jhazmat.2010.02.080
  • Kaçamer, Ö.G.S., Budakçı, M. and Kap, Ö.Ü.T. (2019). Odun Plastik Kompozit Malzeme Üretiminde Kullanılan Malzemelerle İlgili Türkiye’de Yapılan Çalışmalar. International Marmara Sciences and Social Sciences Congress, (pp. 526-534). Kocaeli, Turkey.
  • Karakuş, K. (2008). Üniversitemizdeki Polietilen ve Polipropilen Atıkların Polimer Kompozit Üretiminde Değerlendirilmesi (Yüksek Lisans Tezi). Erişim adresi: https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • Kim, J. K. and Pal, K. (2010). Recent advances in the processing of wood-plastic composites. London-New York: Springer. Erişim adresi: https://link.springer.com/book/10.1007/978-3-642-14877-4
  • Klyosov, A.A. (2007). Wood-plastic composites. New Jersey: John Wiley and Sons. Erişim adresi: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470165935
  • Mantia, F.L., Morreale, M. and Ishak, Z.M. (2005). Processing and mechanical properties of organic filler–polypropylene composites. Journal of applied polymer science, 96(5), 1906-1913. https://doi.org/10.1002/app.21623
  • Mohamed, M.A. (2021). An assessment of forest cover change and its driving forces in the syrian coastal region during a period of conflict, 2010 to 2020. Land, 10(2), 191. https://doi.org/10.3390/land10020191
  • Öztürk, M. (2018). Mermer kesiminden kaynaklanan çevre kirliliği ve önlemleri, Çevre ve Şehircilik Bakanlığı, Çevre ve Şehir Kütüphanesi. Ankara. Erişim adresi: http://www. cevresehirkutuphanesi. com/assets/files/slider_pdf/5mgT7FNMcjwz. pdf (11.05.2019).
  • Pamphlet, A.M.C. (1981). Engineering Design Handbook: Discontinuous Fiberglass Reinforced Thermoplastics. Alexandria: US Army Materiel Development and Readiness Command.
  • Rowell, R.M. (2012). Handbook of Wood Chemistry and Wood Composites. USA: CRC press. Erişim adresi: https://www.taylorfrancis.com/books/mono/10.1201/b12487/handbook-wood-chemistry-wood-composites-roger-rowell
  • Sözen, E., Aydemir, D. and Zor, M. (2017). The effects of lignocellulosic fillers on mechanical, morphological and thermal properties of wood polymer composites. Drvna industrija, 68(3), 195-204. https://doi.org/10.5552/drind.2017.1709
  • Sufian, M., Ullah, S., Ostrowski, K.A., Ahmad, A., Zia, A., Śliwa-Wieczorek, K. and Awan, A.A. (2021). An experimental and empirical study on the use of waste marble powder in construction material. Materials, 14(14), 3829. https://doi.org/10.3390/ma14143829
  • Zor M., Kiziltas, A., Wang. L. and Gardner, D.J. (2018). Heat treated wood-filled styrene maleic anhydride (SMA) copolymer composites. Kastamonu University Journal of Forestry Faculty, 18(2), 203-214. https://doi.org/10.17475/kastorman.371198
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Composite and Hybrid Materials
Journal Section Research Articles
Authors

Sefa Durmaz 0000-0002-3880-0033

Publication Date August 15, 2022
Published in Issue Year 2022 Volume: 24 Issue: 2

Cite

APA Durmaz, S. (2022). Mermer Atıklarının Düz Presleme Yöntemiyle Üretilen Odun Plastik Kompozitlerinde Değerlendirilmesi. Bartın Orman Fakültesi Dergisi, 24(2), 220-227. https://doi.org/10.24011/barofd.1084516


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Fax: +90 (378) 223 5077, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com