Research Article
BibTex RIS Cite

Sedir Odununun (Cedrus libani A.) Elastik Sabitleri

Year 2022, Volume: 24 Issue: 3, 436 - 443, 15.12.2022
https://doi.org/10.24011/barofd.1130549

Abstract

Günümüzde kullanılan bilgisayar destekli tasarım ve üretim sistemlerinde ahşap malzemenin optimum tasarımının yapılabilmesi için tüm elastik sabitlerinin bilinmesi gerekir. Ortotropik bir malzeme olan ahşabın bu sistemlere entegrasyonu için dokuz elastik sabite ihtiyaç vardır. Bu çalışmada, Sedir (Cedrus libani A.) odununun sabit sıcaklık ve rutubet koşullarında elastik sabitleri incelenmiştir. Elastik sabitler basma testleri uygulanan 20 x 20 x 60 mm ebatlarındaki örneklerden elde edilmiştir. İncelenen özellikler; lif yönü, radyal ve teğet yönlerde elastik modülü (EL, ER, ET) üç ana düzlemde kayma modülü (GLR, GLT, GRT) ve altı Poisson oranından (νLR, νLT, νRL, νRT, νTL, νTR) oluşmaktadır. Deney örneklerinin üç farklı lif yönündeki basınç dirençleri de çalışmada belirlenmiştir. Yükleme sırasında meydana gelen şekil değişmeleri çift eksenli ekstansometre kullanılarak ölçülmüştür. Elastik sabitler, gerilme-şekil değiştirme eğrileri kullanılarak hesaplanmıştır. Sedir odununda belirlenen EL, ER, ET değerleri sırasıyla 7800, 890 ve 670 N/mm2, GLR, GLT, GRT değerleri ise sırasıyla 836, 780, 156 N/mm2 ve Poisson oranları ise 0.052 ile 0.522 arasında değişmektedir. Çalışmada bulunan elastik sabitler, sedir odununun nümerik modellenmesinde kullanılabilir.

References

  • Aira, J. R., Arriaga. F. and Gonzalez, G. I. (2014). Determination of the elastic constants of Scots pine (Pinus sylvestris L.) wood by means of compression. Biosystems Engineering 126, 12-22. http://doi.org/10.1016/j.biosystemseng.2014.07.008
  • As, N., Koç, K.H., Doğu, A.D., Atik, C., Aksu, B. ve Erdinler, E.S. (2001). Türkiye’de yetişen endüstriyel öneme sahip ağaçların anatomik , fiziksel, mekanik ve kimyasal özellikleri. Journal of the Faculty of Forestry Istanbul University 51(1), 71–88.
  • Aydın, T.Y. (2021). Evaluation of heating temperature and time on bending properties of Taurus cedar wood. Turkish Journal of Forestry 22(4), 432-438. http://doi.org/ 10.18182/tjf.1019032
  • Bal, B.C., Bektaş, I. ve Kaymakçı, A. (2012). Some physical and mechanical properties of juvenile wood and mature wood of Taurus cedar. KSU Journal of Engineering Sciences 15(2), 17–26.
  • Bal, B.C. (2013). Effects of heat treatment on the physical properties of heartwood and sapwood of Cedrus libani. BioReources 8(1), 211-219.
  • Bartolucci, B., De Rosa, A., Bertolin, C., Berto, F., Penta, F., Siani, A.M. (2020). Mechanical properties of the most common European woods: a literature review. Frattura ed Integrità Strutturale 54, 249-274. DOI: 10.3221/IGF-ESIS.54.18
  • Bergander, A. and Salmén, L. (2002). Cell wall properties and their effects on the mechanical properties of fibers. Journal of Materials Science 37: 151-156. https://doi.org/10.1023/A:1013115925679
  • Berkel, A. (1951). Lübnan sedirinde teknolojik araştırmalar, İÜ Orman fakültesi dergisi (A), 182-211.
  • Bodig, J. ve Jayne, B.A. (1993). Mechanics of wood and wood Composites. ISBN 978-0894647772. 736 p. Krieger Publishing Company: Melbourne, FL, USA.
  • Bozkurt, Y. ve Erdin, N. (1995). İğne Yapraklı Ve Yapraklı Ağaç Odunlarında Tanım Özellikleri, İstanbul üniversitesi, Orman fakültesi yayınları, Üniversite yayın No:3907. İstanbul
  • Brandner, R., Gehri, E., Bogensperger, T. and Schickhofer, G. (2007). Determination of modulus of shear and elasticity of glued laminated timber and related examinations. CIB W 18-40-12-2, Bled, Slovenia.
  • Brunetti, M., De Capua, E.L., Macchioni, N., Monachello, S. 2001. Natural durability, physical and mechanical properties of Atlas cedar (Cedrus atlantica Manetti) wood from Southern Italy. Annals of Forest Science 58(6), 607-613 DOI:10.1051/forest:2001148
  • Demetçi, E. (1986). Toros sediri (cedrus libani a. Rich.) odununun bazı fiziksel ve mekanik özellikleri üzerine araştırmalar. Ormancılık Araştırma Enstitüsü Yayınları, Teknik Bülten Serisi No: 180, Ankara
  • Divos, F., Tanaka, T., Nagao, H. and Kato, H. (1998). Determination of shear modulus on construction size timber. Wood Science and Technology 32, 393-402.
  • Efe, F. (2021). A study on the determination of some physical and mechanical properties of wood of Taurus cedar. Turkish Journal of Agricultural and Natural Sciences 8(1), 43–52. https://doi.org/10.30910/turkjans.809010
  • Harrıson, S.K. (2006). Comparison of Shear Modulus Test Methods. Master thesis, Faculty of Virginia Polytechnic and State University, Blacksburg, USA.
  • Herıng, S., Keunecke, D. and Niemz, P. (2012). Moisture-dependent orthotropic elasticity of beech wood. Wood Science and Technology 45, 927-938. http://doi.org/10.1007/s00226-011-0449-4
  • Jeong G.Y., Hindman, D.P., Zink-Sharp, A. (2010). Orthotropic properties of loblolly pine (Pinus taeda) strands. Journal of Material Science (45), 5820–5830. http://doi.org/10.1007/s10853-010-4658-2
  • Keskin, H. (2001). Lamine Masif Ağaç Malzemelerin Teknolojik Özellikleri ve Ağaç İşleri Endüstrisinde Kullanım İmkanları. Yayımlanmamış Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Kumpenza, C., Matz, P., Halbauer, P., Grabner, M., Steiner, G., Feist, F. and Müller, U. (2018). Measuring Poisson’s ratio: mechanical characterization of spruce wood by means of non contact optical gauging techniques. Wood Science and Technology, 52:1451-1471.
  • Mayer, H. and Sevim, M. (1959). Lübnan sediri, Lübnan’daki 5000 yıllık tahribatı, Anadolu’da bugünkü yayılış sahası ve bu ağaç türünün Alplere tekrar getirilmesi hakkında düşünceler. İÜ Orman Fakültesi Dergisi (B), 11(2), 111-142.
  • Mızutani, M.; Ando, K. (2015). Influence of a wide range of moisture contents on the Poisson’s ratio of wood. Journal of Wood Science 61, 81-85. https://doi.org/10.1007/s10086-014-1438-7
  • Ozyhar, T.; Hering, S.; Nıemz, P. (2013a). Moisture-dependent orthotropic tension compression asymmetry of wood. Holzforschung 67(4), 395–404. https://doi.org/10.1515/hf-2012-0089
  • Ozyhar, T., Hering, S., Sanabria, S.J., Niemz, P. (2013b). Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Science and Technology 47(2), 329–341. DOI 10.1007/s00226-012-0499-2
  • J. Perlin, 1989. A Forest Journey, W.W. Norton and Company Inc., New York.
  • Ross, R.J. (2010). Wood handbook: Wood as an engineering material. General Technical Report FPL-GTR 190, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI.

Elastic Constants of Cedar (Cedrus libani A.) Wood

Year 2022, Volume: 24 Issue: 3, 436 - 443, 15.12.2022
https://doi.org/10.24011/barofd.1130549

Abstract

In order to make the optimum design of wood material in computer aided design and production systems used today, all elastic constants must be known. Nine elastic constants are needed for the integration of wood which is an orthotropic material into these systems. In this study, elastic constants of Cedar (Cedrus libani A.) wood were investigated at constant temperature and relative humidity conditions. Elastic Constants were obtained from samples of 20 x 20 x 60 mm in compression tests. Three elastic moduli (EL, ER, ET) in principal directions, three shear modulus in the LR, LT and TR planes and six Poisson’s ratios (νLR, νLT, νRL, νRT, νTL, νTR) were evaluated. Compression strength of the specimens in L, R and T directions were also calculated. Strains occurred during loading were measured using bi-axial extensometer. Elastic constants were calculated from the load-deformation curves. EL, ER, ET values determined in cedar wood were 7800, 890 and 670 N/mm2, GLR, GLT, GRT values were 836, 780, 156 N/mm2, and Poisson ratios ranged between 0.052 and 0.522, respectively. The compressive strengths in the L, R and T directions were found as 44.1, 8.6 and 7.6 N/mm2, respectively. Properties found in the study can be used in numerical modelling of cedar wood.

References

  • Aira, J. R., Arriaga. F. and Gonzalez, G. I. (2014). Determination of the elastic constants of Scots pine (Pinus sylvestris L.) wood by means of compression. Biosystems Engineering 126, 12-22. http://doi.org/10.1016/j.biosystemseng.2014.07.008
  • As, N., Koç, K.H., Doğu, A.D., Atik, C., Aksu, B. ve Erdinler, E.S. (2001). Türkiye’de yetişen endüstriyel öneme sahip ağaçların anatomik , fiziksel, mekanik ve kimyasal özellikleri. Journal of the Faculty of Forestry Istanbul University 51(1), 71–88.
  • Aydın, T.Y. (2021). Evaluation of heating temperature and time on bending properties of Taurus cedar wood. Turkish Journal of Forestry 22(4), 432-438. http://doi.org/ 10.18182/tjf.1019032
  • Bal, B.C., Bektaş, I. ve Kaymakçı, A. (2012). Some physical and mechanical properties of juvenile wood and mature wood of Taurus cedar. KSU Journal of Engineering Sciences 15(2), 17–26.
  • Bal, B.C. (2013). Effects of heat treatment on the physical properties of heartwood and sapwood of Cedrus libani. BioReources 8(1), 211-219.
  • Bartolucci, B., De Rosa, A., Bertolin, C., Berto, F., Penta, F., Siani, A.M. (2020). Mechanical properties of the most common European woods: a literature review. Frattura ed Integrità Strutturale 54, 249-274. DOI: 10.3221/IGF-ESIS.54.18
  • Bergander, A. and Salmén, L. (2002). Cell wall properties and their effects on the mechanical properties of fibers. Journal of Materials Science 37: 151-156. https://doi.org/10.1023/A:1013115925679
  • Berkel, A. (1951). Lübnan sedirinde teknolojik araştırmalar, İÜ Orman fakültesi dergisi (A), 182-211.
  • Bodig, J. ve Jayne, B.A. (1993). Mechanics of wood and wood Composites. ISBN 978-0894647772. 736 p. Krieger Publishing Company: Melbourne, FL, USA.
  • Bozkurt, Y. ve Erdin, N. (1995). İğne Yapraklı Ve Yapraklı Ağaç Odunlarında Tanım Özellikleri, İstanbul üniversitesi, Orman fakültesi yayınları, Üniversite yayın No:3907. İstanbul
  • Brandner, R., Gehri, E., Bogensperger, T. and Schickhofer, G. (2007). Determination of modulus of shear and elasticity of glued laminated timber and related examinations. CIB W 18-40-12-2, Bled, Slovenia.
  • Brunetti, M., De Capua, E.L., Macchioni, N., Monachello, S. 2001. Natural durability, physical and mechanical properties of Atlas cedar (Cedrus atlantica Manetti) wood from Southern Italy. Annals of Forest Science 58(6), 607-613 DOI:10.1051/forest:2001148
  • Demetçi, E. (1986). Toros sediri (cedrus libani a. Rich.) odununun bazı fiziksel ve mekanik özellikleri üzerine araştırmalar. Ormancılık Araştırma Enstitüsü Yayınları, Teknik Bülten Serisi No: 180, Ankara
  • Divos, F., Tanaka, T., Nagao, H. and Kato, H. (1998). Determination of shear modulus on construction size timber. Wood Science and Technology 32, 393-402.
  • Efe, F. (2021). A study on the determination of some physical and mechanical properties of wood of Taurus cedar. Turkish Journal of Agricultural and Natural Sciences 8(1), 43–52. https://doi.org/10.30910/turkjans.809010
  • Harrıson, S.K. (2006). Comparison of Shear Modulus Test Methods. Master thesis, Faculty of Virginia Polytechnic and State University, Blacksburg, USA.
  • Herıng, S., Keunecke, D. and Niemz, P. (2012). Moisture-dependent orthotropic elasticity of beech wood. Wood Science and Technology 45, 927-938. http://doi.org/10.1007/s00226-011-0449-4
  • Jeong G.Y., Hindman, D.P., Zink-Sharp, A. (2010). Orthotropic properties of loblolly pine (Pinus taeda) strands. Journal of Material Science (45), 5820–5830. http://doi.org/10.1007/s10853-010-4658-2
  • Keskin, H. (2001). Lamine Masif Ağaç Malzemelerin Teknolojik Özellikleri ve Ağaç İşleri Endüstrisinde Kullanım İmkanları. Yayımlanmamış Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Kumpenza, C., Matz, P., Halbauer, P., Grabner, M., Steiner, G., Feist, F. and Müller, U. (2018). Measuring Poisson’s ratio: mechanical characterization of spruce wood by means of non contact optical gauging techniques. Wood Science and Technology, 52:1451-1471.
  • Mayer, H. and Sevim, M. (1959). Lübnan sediri, Lübnan’daki 5000 yıllık tahribatı, Anadolu’da bugünkü yayılış sahası ve bu ağaç türünün Alplere tekrar getirilmesi hakkında düşünceler. İÜ Orman Fakültesi Dergisi (B), 11(2), 111-142.
  • Mızutani, M.; Ando, K. (2015). Influence of a wide range of moisture contents on the Poisson’s ratio of wood. Journal of Wood Science 61, 81-85. https://doi.org/10.1007/s10086-014-1438-7
  • Ozyhar, T.; Hering, S.; Nıemz, P. (2013a). Moisture-dependent orthotropic tension compression asymmetry of wood. Holzforschung 67(4), 395–404. https://doi.org/10.1515/hf-2012-0089
  • Ozyhar, T., Hering, S., Sanabria, S.J., Niemz, P. (2013b). Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Science and Technology 47(2), 329–341. DOI 10.1007/s00226-012-0499-2
  • J. Perlin, 1989. A Forest Journey, W.W. Norton and Company Inc., New York.
  • Ross, R.J. (2010). Wood handbook: Wood as an engineering material. General Technical Report FPL-GTR 190, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Forest Industry Engineering
Journal Section Research Articles
Authors

Ergün Güntekin 0000-0002-8423-6664

Early Pub Date September 13, 2022
Publication Date December 15, 2022
Published in Issue Year 2022 Volume: 24 Issue: 3

Cite

APA Güntekin, E. (2022). Sedir Odununun (Cedrus libani A.) Elastik Sabitleri. Bartın Orman Fakültesi Dergisi, 24(3), 436-443. https://doi.org/10.24011/barofd.1130549


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Fax: +90 (378) 223 5077, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com