Research Article
BibTex RIS Cite

Türkiye Ormanlarında Net Birincil Üretim ve Bazı İklim Değişkenleri Arasındaki Zamansal İlişki: 2000-2019

Year 2023, Volume: 25 Issue: 3, 455 - 465, 15.12.2023
https://doi.org/10.24011/barofd.1356539

Abstract

İklim değişikliğinin bitki örtüsü üzerindeki etkilerini araştırmak, aralarındaki etkileşimi yorumlamada faydalı bilgiler sağlamaktadır. Bu tür çalışmalar özellikle karasal ekosistemlerde önemli bir karbon deposu olan ormanlar ile iklim arasındaki karmaşık ilişkileri ortaya çıkarmak için oldukça etkilidir. Bu çalışmada Türkiye ormanlarına odaklanılarak 2000-2019 yılları sürecinde yıllık toplam net birincil üretim (NBÜ) ile ortalama sıcaklık (°C) ve ortalama yağış (mm) parametreleri arasındaki ilişkiler irdelenmiştir. Çalışmada, Moderate Resolution Imaging Spectroradiometer (MODIS) uydu görüntüsünden NBÜ haritası, Coordination of Information on the Environment Project (CORINE) sisteminden orman tipleri haritası ve Meteoroloji Genel Müdürlüğü’nden temin edilen iklim parametreleri materyal olarak kullanılmıştır. Çalışmada elde edilen bulgulara göre en düşük yıllık ortalama sıcaklık 12,8 °C (2011), en yüksek ise 15,1 °C (2010, 2018) bulunmuştur. En düşük ve en yüksek yağış miktarı 2008 (493,1 mm) ve 2009 (793,8 mm) yıllarında tespit edilmiştir. 2000-2019 yılları sürecinde Türkiye ormanlarında en yüksek yıllık ortalama NBÜ miktarları 2013 (797,1 gC m2 yıl) ve 2019 (795,4 gC m2 yıl) yıllarında elde edilmiştir. Orman tipleri arasında 20 yıllık en yüksek ortalama NBÜ geniş yapraklı ormanlar için bulunmuştur (800,7 gC m2 yıl). Çalışmanın genel sonucu olarak yıllık ortalama yağış miktarındaki kısmi azalma Türkiye ormanlarının yıllık net üretimini olumsuz yönde etkilememiştir. Yıllık ortalama sıcaklıktaki artış ise ormanların yıllık NBÜ miktarlarına pozitif etki yapmıştır.

References

  • Amantai, N., Meng, Y., Song, S., Li, Z., Hou, B., and Tang, Z. (2023). Spatial–temporal patterns of ınterannual variability in planted forests: NPP time-series analysis on the Loess Plateau. Remote Sensing, 15(13), 3380.
  • Başkent, E.Z., Keleş, S., Kadıoğulları, A.İ., and Bingöl, Ö. (2011). Quantifying the effects of forest management strategies on the production of forest values: timber, carbon, oxygen, water, and soil. Environmental Modeling & Assessment, 16, 145-152.
  • Başkent, E.Z. (2020). A framework for characterizing and regulating ecosystem services in a management planning context. Forests, 11(1), 102.
  • Berberoglu, S., Donmez, C., and Cilek, A. (2021). Modelling climate change impacts on regional net primary productivity in Turkey. Environmental monitoring and assessment, 193, 1-15.
  • Bilgili, B.C., Erşahin, S., Kavaklıgil, S.S. and Öner, N. (2020). Net primary productivity of a mountain forest ecosystem as affected by climate and topography. CERNE, v. 26, n. 3, p.356-368.
  • Bulut, S., Şatır, O. and Günlü, A. (2019). Determining the interactions of black pine net primary productivity and forest stand parameters in northern Turkey. Applied Ecology and Environmental Research.
  • Bulut, S. (2021). Ankara Orman Bölge Müdürlüğü saf Karaçam meşcerelerinde net birincil üretim ve yaprak alan indeksinin uzaktan algılama teknikleri ile modellenmesi. Çankırı Karatekin Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 148 s.
  • Bulut, S., Günlü, A., and Şatır, O. (2023). Estimating net primary productivity of semi-arid Crimean pine stands using biogeochemical modelling, remote sensing, and machine learning. Ecological Informatics, 76, 102137.
  • Chen, H.Y.H. and Luo, Y. (2015). Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada’s boreal forests. Glob. Chang. Biol. 21, 3675–3684.
  • Chen, Y., Wang, J., Xiong, N., Sun, L., and Xu, J. (2022). Impacts of land use changes on net primary productivity in urban agglomerations under multi-scenarios simulation. Remote Sensing, 14(7), 1755.
  • Chirici, G., Chiesi, M., Fibbi, L., Giannetti, F., Corona, P., and Maselli, F. (2022). High spatial resolution modelling of net forest carbon fluxes based on ground and remote sensing data. Agricultural and Forest Meteorology, 316, 108866.
  • Dönmez, C. Berberoglu, S. and Cilek, A. (2015). Spatial variations of NPP in different altitudes at a mediterranean watershed. Fresenius Environmental Bulletin, 24(7); 2264–2274.
  • Dönmez, C. Berberoglu, S. Cilek, A. and Evrendilek, F. (2016). Spatiotemporal modeling of net primary productivity of eastern mediterranean biomes under different regional climate change scenarios. International Journal of Environmental Research, 10(2); 341–356.
  • Erşahin, S., Bilgili, B.C., Dikmen, Ü. and Ercanlı, İ. (2016). Net primary productivity of Anatolian forests in relation to climate, 2000–2010. Forest Science, 62(6), 698-709.
  • Field, C.B., Randerson, J.T., and Malmström, C.M. (1995). Global net primary production: combining ecology and remote sensing. Remote sensing of Environment, 51(1), 74-88.
  • Gower, S.T., Kucharik, C.J. and Norman, J.M. (1999). Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote sensing of environment, 70(1), 29-51.
  • Ji, Y., Zhou, G., Luo, T., Dan, Y., Zhou, L. and Lv, X. (2020). Variation of net primary productivity and its drivers in China’s forests during 2000–2018. Forest Ecosystems, 7(1), 1-11.
  • Li, T., Li, M., Ren, F., and Tian, L. (2022a). Estimation and spatio-temporal change analysis of NPP in subtropical forests: A case study of Shaoguan, Guangdong, China. Remote Sensing, 14(11), 2541.
  • Li, Y., Brando, P.M., Morton, D.C., Lawrence, D.M., Yang, H., and Randerson, J.T. (2022b). Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nat. Commun. 2022, 13, 1–13.
  • Luyssaert, S., Schulze, E.D., Börner, A., Knohl, A., Hessenmöller, D., Law, B.E., Ciais, P. and Grace, J. (2008). Old-growth forests as global carbon sinks. Nature, 455(7210), 213-215.
  • Peng, D., J. Huang, A.R. Huete, T. Yang, P. Gao, Y. Chen, H. Chen, J. Li, and Z. Liu. (2010). Spatial and seasonal characterization of net primary productivity and climate variables in southeastern China using MODIS data. Journal of Zhejiang University (Science B), 11(4):275–285.
  • Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A. and Klooster, S.A. (1993). Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 7, 811–841.
  • Ryan, M.G., Binkley, D., Fownes, J.H., Giardina, C.P. and Senock, R.S. (2004). An experimental test of the causes of forest growth decline with stand age. Ecological Monographs, 74(3), 393-414.
  • Shoo, L.P., and Ramirez, V.V. (2010). Global potential net primary production predicted from vegetation class, precipitation, and temperature: comment. Ecology, 91(3), 921-923.
  • Sullivan, M.J.P., Lewis, S.L., Affum-Baffoe, K., Castilho, C., Costa, F., Sanchez, A.C., Ewango, C.E.N., Hubau,W., Marimon, B., Monteagudo-Mendoza, A., …, and Vargas, P.N. (2020). Long-term thermal sensitivity of Earth’s tropical forests. Science 2020, 368, 869–874.
  • Şensoy, S., Demircan, M., Ulupınar, U. ve Balta, I. (2008). Türkiye iklimi. Turkish State Meteorological Service (DMİ), Ankara.
  • Taiz, L. and Zeiger, E. (2008). Plant physiology. Sinauer Associates, Inc., Publishers, ISBN: 0-87893-823-0. URL 1. Erişim adresi https://tr.wikipedia.org/wiki/T%C3%BCrkiye_co%C4%9Frafyas%C4%B1.
  • Wang, X.K., Feng, Z.W. and Ouyang, Z.Y. (2001). The impact of human disturbance on vegetative carbon storage in forest ecosystems in China. For. Ecol. Manag., 148, 117–123.
  • Wang, S., Zhou, L., Chen, J., Ju, W., Feng, X. and Wu, W. (2011). Relationships between net primary productivity and stand age for several forest types and their influence on China’s carbon balance. Journal of Environmental Management, 92(6), 1651-1662.
  • Wang, Z., Wang, H., Wang, T., Wang, L., Huang, X., Zheng, K., and Liu, X. (2022). Effects of environmental factors on the changes in MODIS NPP along DEM in global terrestrial ecosystems over the last two decades. Remote Sensing, 14(3), 713.
  • Wu, Y., Luo, Z., and Wu, Z. (2022). The different impacts of climate variability and human activities on NPP in the Guangdong–Hong Kong–Macao Greater Bay Area. Remote Sensing, 14(12), 2929.
  • Yang, J., Ji, X., Deane, D. C., Wu, L., and Chen, S. (2017). Spatiotemporal distribution and driving factors of forest biomass carbon storage in China: 1977–2013. Forests, 8(7), 263.
  • Zhang, M., Lin, H., Wang, G., Sun, H. and Cai, Y. (2019). Estimation of vegetation productivity using a Landsat 8 time series in a heavily urbanized area, Central China. Remote Sensing, 11(2), 133.
  • Zhang, W., Yang, Y., Hu, C., Zhang, L., Hou, B., Wang, W., ... and Li, Y. (2023). NPP and carbon emissions under forest fire disturbance in Southwest and Northeast China from 2001 to 2020. Forests, 14(5), 999.

Temporal Relationship Between Net Primary Production and Some Climate Variables in Türkiye Forests: 2000-2019

Year 2023, Volume: 25 Issue: 3, 455 - 465, 15.12.2023
https://doi.org/10.24011/barofd.1356539

Abstract

Investigating the effects of climate change on vegetation provides useful information in interpreting the interactions between them. Such studies are particularly effective in revealing the complex relationships between climate and forests, which are an important carbon store in terrestrial ecosystems. In this study, focusing on the forests of Turkey, the relationships between the annual total net primary productivity (NPP), mean temperature (°C) and mean precipitation (mm) parameters during the years 2000-2019 were examined. In the study, the NPP map obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite image, the forest type maps obtained from the Coordination of Information on the Environment Project (CORINE) system and the climate parameters obtained from the General Directorate of Meteorology were used as materials. According to the results obtained in the study, the lowest annual mean temperature was 12.8 °C (2011) and the highest was 15.1 °C (2010, 2018). The lowest and highest precipitation was determined in 2008 (493.1 mm) and 2009 (793.8 mm). During the period 2000-2019, the highest annual mean NPP amounts in Turkish forests were obtained in 2013 (797.1 gC m2 year) and 2019 (795.4 gC m2 year). Among forest types, the highest 20-year mean NPP was found for broad-leaved forests (800.7 gC m2 year). As a general result of the study, the partial decrease in the annual mean precipitation did not negatively affect the annual net production of Turkey's forests. The increase in annual mean temperature had a positive effect on the annual NPP amounts of forests.

References

  • Amantai, N., Meng, Y., Song, S., Li, Z., Hou, B., and Tang, Z. (2023). Spatial–temporal patterns of ınterannual variability in planted forests: NPP time-series analysis on the Loess Plateau. Remote Sensing, 15(13), 3380.
  • Başkent, E.Z., Keleş, S., Kadıoğulları, A.İ., and Bingöl, Ö. (2011). Quantifying the effects of forest management strategies on the production of forest values: timber, carbon, oxygen, water, and soil. Environmental Modeling & Assessment, 16, 145-152.
  • Başkent, E.Z. (2020). A framework for characterizing and regulating ecosystem services in a management planning context. Forests, 11(1), 102.
  • Berberoglu, S., Donmez, C., and Cilek, A. (2021). Modelling climate change impacts on regional net primary productivity in Turkey. Environmental monitoring and assessment, 193, 1-15.
  • Bilgili, B.C., Erşahin, S., Kavaklıgil, S.S. and Öner, N. (2020). Net primary productivity of a mountain forest ecosystem as affected by climate and topography. CERNE, v. 26, n. 3, p.356-368.
  • Bulut, S., Şatır, O. and Günlü, A. (2019). Determining the interactions of black pine net primary productivity and forest stand parameters in northern Turkey. Applied Ecology and Environmental Research.
  • Bulut, S. (2021). Ankara Orman Bölge Müdürlüğü saf Karaçam meşcerelerinde net birincil üretim ve yaprak alan indeksinin uzaktan algılama teknikleri ile modellenmesi. Çankırı Karatekin Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 148 s.
  • Bulut, S., Günlü, A., and Şatır, O. (2023). Estimating net primary productivity of semi-arid Crimean pine stands using biogeochemical modelling, remote sensing, and machine learning. Ecological Informatics, 76, 102137.
  • Chen, H.Y.H. and Luo, Y. (2015). Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada’s boreal forests. Glob. Chang. Biol. 21, 3675–3684.
  • Chen, Y., Wang, J., Xiong, N., Sun, L., and Xu, J. (2022). Impacts of land use changes on net primary productivity in urban agglomerations under multi-scenarios simulation. Remote Sensing, 14(7), 1755.
  • Chirici, G., Chiesi, M., Fibbi, L., Giannetti, F., Corona, P., and Maselli, F. (2022). High spatial resolution modelling of net forest carbon fluxes based on ground and remote sensing data. Agricultural and Forest Meteorology, 316, 108866.
  • Dönmez, C. Berberoglu, S. and Cilek, A. (2015). Spatial variations of NPP in different altitudes at a mediterranean watershed. Fresenius Environmental Bulletin, 24(7); 2264–2274.
  • Dönmez, C. Berberoglu, S. Cilek, A. and Evrendilek, F. (2016). Spatiotemporal modeling of net primary productivity of eastern mediterranean biomes under different regional climate change scenarios. International Journal of Environmental Research, 10(2); 341–356.
  • Erşahin, S., Bilgili, B.C., Dikmen, Ü. and Ercanlı, İ. (2016). Net primary productivity of Anatolian forests in relation to climate, 2000–2010. Forest Science, 62(6), 698-709.
  • Field, C.B., Randerson, J.T., and Malmström, C.M. (1995). Global net primary production: combining ecology and remote sensing. Remote sensing of Environment, 51(1), 74-88.
  • Gower, S.T., Kucharik, C.J. and Norman, J.M. (1999). Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote sensing of environment, 70(1), 29-51.
  • Ji, Y., Zhou, G., Luo, T., Dan, Y., Zhou, L. and Lv, X. (2020). Variation of net primary productivity and its drivers in China’s forests during 2000–2018. Forest Ecosystems, 7(1), 1-11.
  • Li, T., Li, M., Ren, F., and Tian, L. (2022a). Estimation and spatio-temporal change analysis of NPP in subtropical forests: A case study of Shaoguan, Guangdong, China. Remote Sensing, 14(11), 2541.
  • Li, Y., Brando, P.M., Morton, D.C., Lawrence, D.M., Yang, H., and Randerson, J.T. (2022b). Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nat. Commun. 2022, 13, 1–13.
  • Luyssaert, S., Schulze, E.D., Börner, A., Knohl, A., Hessenmöller, D., Law, B.E., Ciais, P. and Grace, J. (2008). Old-growth forests as global carbon sinks. Nature, 455(7210), 213-215.
  • Peng, D., J. Huang, A.R. Huete, T. Yang, P. Gao, Y. Chen, H. Chen, J. Li, and Z. Liu. (2010). Spatial and seasonal characterization of net primary productivity and climate variables in southeastern China using MODIS data. Journal of Zhejiang University (Science B), 11(4):275–285.
  • Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A. and Klooster, S.A. (1993). Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 7, 811–841.
  • Ryan, M.G., Binkley, D., Fownes, J.H., Giardina, C.P. and Senock, R.S. (2004). An experimental test of the causes of forest growth decline with stand age. Ecological Monographs, 74(3), 393-414.
  • Shoo, L.P., and Ramirez, V.V. (2010). Global potential net primary production predicted from vegetation class, precipitation, and temperature: comment. Ecology, 91(3), 921-923.
  • Sullivan, M.J.P., Lewis, S.L., Affum-Baffoe, K., Castilho, C., Costa, F., Sanchez, A.C., Ewango, C.E.N., Hubau,W., Marimon, B., Monteagudo-Mendoza, A., …, and Vargas, P.N. (2020). Long-term thermal sensitivity of Earth’s tropical forests. Science 2020, 368, 869–874.
  • Şensoy, S., Demircan, M., Ulupınar, U. ve Balta, I. (2008). Türkiye iklimi. Turkish State Meteorological Service (DMİ), Ankara.
  • Taiz, L. and Zeiger, E. (2008). Plant physiology. Sinauer Associates, Inc., Publishers, ISBN: 0-87893-823-0. URL 1. Erişim adresi https://tr.wikipedia.org/wiki/T%C3%BCrkiye_co%C4%9Frafyas%C4%B1.
  • Wang, X.K., Feng, Z.W. and Ouyang, Z.Y. (2001). The impact of human disturbance on vegetative carbon storage in forest ecosystems in China. For. Ecol. Manag., 148, 117–123.
  • Wang, S., Zhou, L., Chen, J., Ju, W., Feng, X. and Wu, W. (2011). Relationships between net primary productivity and stand age for several forest types and their influence on China’s carbon balance. Journal of Environmental Management, 92(6), 1651-1662.
  • Wang, Z., Wang, H., Wang, T., Wang, L., Huang, X., Zheng, K., and Liu, X. (2022). Effects of environmental factors on the changes in MODIS NPP along DEM in global terrestrial ecosystems over the last two decades. Remote Sensing, 14(3), 713.
  • Wu, Y., Luo, Z., and Wu, Z. (2022). The different impacts of climate variability and human activities on NPP in the Guangdong–Hong Kong–Macao Greater Bay Area. Remote Sensing, 14(12), 2929.
  • Yang, J., Ji, X., Deane, D. C., Wu, L., and Chen, S. (2017). Spatiotemporal distribution and driving factors of forest biomass carbon storage in China: 1977–2013. Forests, 8(7), 263.
  • Zhang, M., Lin, H., Wang, G., Sun, H. and Cai, Y. (2019). Estimation of vegetation productivity using a Landsat 8 time series in a heavily urbanized area, Central China. Remote Sensing, 11(2), 133.
  • Zhang, W., Yang, Y., Hu, C., Zhang, L., Hou, B., Wang, W., ... and Li, Y. (2023). NPP and carbon emissions under forest fire disturbance in Southwest and Northeast China from 2001 to 2020. Forests, 14(5), 999.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Forestry Sciences (Other)
Journal Section Research Articles
Authors

Sinan Bulut 0000-0001-6149-0910

Publication Date December 15, 2023
Published in Issue Year 2023 Volume: 25 Issue: 3

Cite

APA Bulut, S. (2023). Türkiye Ormanlarında Net Birincil Üretim ve Bazı İklim Değişkenleri Arasındaki Zamansal İlişki: 2000-2019. Bartın Orman Fakültesi Dergisi, 25(3), 455-465. https://doi.org/10.24011/barofd.1356539


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Fax: +90 (378) 223 5077, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com