Research Article
BibTex RIS Cite

Poliüretan Köpük Esaslı Kavak Kompozit Panellerin Fiziksel ve Mekanik Özellikleri

Year 2024, Volume: 26 Issue: 2, 98 - 106, 23.04.2024
https://doi.org/10.24011/barofd.1357963

Abstract

Sandviç paneller günümüzde otomotiv, inşaat, uçak gibi pek çok sektörde tercih edilen bir malzemedir. Bunun yanı sıra izolasyon malzemesi olarak pek çok alanda kullanılmaktadır. Çalışmamızda özellikle izolasyon alanında kullanılmak amacıyla ısı iletimi düşük olan poliüretan ve yüksek direnç özelliklerine sahip ahşap materyalden hem hafif hem de kullanım alanında istenen sağlamlığa sahip levhalar üretmektir. Çalışmamızda kaplama malzemesi olarak kavak paneller, köpük olarak poliüretan köpük kullanılmıştır. 1 cm, 3 cm ve 5 cm kalınlıkta poliüretan köpüğe 5 mm kavak panel kaplama kullanılarak sandviç paneller hazırlanmıştır. Bu panellerin bazı mekanik özellikleri (eğilme direnci ve basınç direnci), ısı iletkenlikleri ve fiziksel özellikleri incelenmiştir. Fiziksel özelliklerden su alma ve kalınlığına şişme özelliğine bakılmıştır. Test sonuçlarına göre 5 cm kalınlıkta poliüretan köpükle hazırlanan sandviç panellerin su alma ve kalınlığına şişme oranlarının daha düşük olduğu yani suya dayanımlarının daha iyi olduğu görülmüştür. Isı iletim katsayısı en yüksek sandviç panel 5 cm kalınlıkta poliüretan köpükle hazırlanan olup en düşük ısı iletim katsayısına sahip panel ise 3 cm kalınlıkta poliüretan köpükle hazırlanan panellerdir. Buna göre yalıtkanlığı en iyi olan sandviç paneller 3 cm kalınlıkta poliüretan köpükle hazırlanmış panellerdir. Mekanik test sonuçlarına bakıldığında ise mekanik olarak en iyi değerlerin genellikle 1 cm kalınlıkta poliüretan köpükle hazırlanmış panellerde olduğu sonucuna ulaşılmıştır.

References

  • Aydemi̇r, D., Gündüz, G. (2009). Ahşabın fiziksel, kimyasal, mekaniksel ve biyolojik özellikleri üzerine ısıyla muamelenin etkisi. Journal of Bartin Faculty of Forestry, 11(15), 61-70.
  • Aydın, H., Ekmekçi, İ. (2002). Isı yalıtım malzemesi olarak poliüretan köpüğün fiziksel ve kimyasal özellikleri, üretimi ve incelenmesi. Sakarya University Journal of Science, 6(1), 45-50. https://doi.org/10.16984/SAUFBED.04643
  • Ayrilmiş, N., Ulay, G., Fatih Bağlı, E., Özkan, İ. (2015). Ahşap sandviç kompozit levhaların yapısı ve mobilya endüstrisinde kullanımı. Journal of Forestry Faculty, 15(1), 37-48.
  • Carriço, C. S., Fraga, T., Carvalho, V. E., Pasa, V. M. (2017). Polyurethane foams for thermal insulation uses produced from castor oil and crude glycerol biopolyols. Molecules, 22(7), 1091.
  • Correia, J. R., Garrido, M., Gonilha, J. A., Branco, F. A., Reis, L. G. (2012). GFRP Sandwich panels with PU foam and PP honeycomb cores for civil engineering structural applications. International Journal of Structural Integrity, 3(2), 127-147. https://doi.org/10.1108/17579861211235165
  • Dukarska, D., Mirski, R. (2023). Wood-based materials in building. Materials, 16(8), 2987. https://doi.org/10.3390/MA16082987
  • Dweib, M. A., Hu, B., O’Donnell, A., Shenton, H. W., Wool, R. P. (2004). All natural composite sandwich beams for structural applications. Composite Structures, 63(2), 147-157. https://doi.org/10.1016/S0263-8223(03)00143-0
  • Ekici, B., Kentli, A., Küçük, H. (2012). Improving sound absorption property of polyurethane foams by adding tea-leaf fibers. Archives of Acoustics, 37(4), 515-520. https://doi.org/10.2478/v10168-012-0052-1
  • Güler, C., Ulay, G. (2010). Köpüklü kompozit (sandviç) levhaların bazı teknolojik özellikleri. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi Seri: A (2), 88-96.
  • ISO 13061-17. (2017). Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood
  • Specimens—Part 17: Determination of Ultimate Stress in Compression Parallel to Grain. nternational Organization for Standardization ISO Central Secretariat Chemin de Blandonnet 8 CP 401 - 1214 Vernier, Geneva, Switzerland.
  • Khan, T., Acar, V., Aydin, M. R., Hülagü, B., Akbulut, H., Seydibeyoğlu, M. Ö. (2020). A review on recent advances in sandwich structures based on polyurethane foam cores. Polymer Composites, 41(6), 2355-2400. https://doi.org/10.1002/PC.25543
  • Mirski, R., Derkowski, A., Dziurka, D., Dukarska, D., Czarnecki, R. (2019). Effects of a chipboard structure on ıts physical and mechanical properties. Materials 2019, Vol. 12, Page 3777, 12(22), 3777. https://doi.org/10.3390/MA12223777
  • Mirski, R., Derkowski, A., Kawalerczyk, J., Dziurka, D., Walkiewicz, J. (2022). The Possibility of Using Pine Bark Particles in the Chipboard Manufacturing Process. Materials 2022, Vol. 15, Page 5731, 15(16), 5731. https://doi.org/10.3390/MA15165731
  • Nazerian, M., Naderi, F., Partovinia, A., Papadopoulos, A. N., Younesi-Kordkheili, H. (2021). Modeling the bending strength of mdf faced, polyurethane foam-cored sandwich panels using response surface methodology (RSM) and artificial neural network (ANN). Forests 2021, Vol. 12, Page 1514, 12(11), 1514. https://doi.org/10.3390/F12111514
  • Pareta, A. S., Gupta, R., Panda, S. K. (2020). Experimental ınvestigation on fly ash particulate reinforcement for property enhancement of PU foam core FRP sandwich composites. Composites Science and Technology, 195, 108207. https://doi.org/10.1016/J.COMPSCITECH.2020.108207
  • Samali, B., Nemati, S., Sharafi, P., Tahmoorian, F., Sanati, F. (2019). Structural performance of polyurethane foam-filled building composite panels: A State of the Art. Journal of Composites Science 2019, Vol. 3, Page 40, 3(2), 40. https://doi.org/10.3390/JCS3020040
  • Santos, P., Correia, J. R., Godinho, L., Dias, A. M. P. G., Dias, A. (2021). Life cycle analysis of cross-insulated timber panels. Structures, 31, 1311-1324. https://doi.org/10.1016/J.ISTRUC.2020.12.008
  • Shenton, H. W., Wool, R. P., Hu, B., O’Donnell, A., Bonnaillie, L., Can, E., Chapas, R., Hong, C. (2002). An all-natural composite material roof system for residential construction. Advances in Building Technology, 255-262. https://doi.org/10.1016/B978-008044100-9/50032-2
  • Soloveva, O. V., Solovev, S. A., Vankov, Y. V., Shakurova, R. Z. (2022). Experimental studies of the effective thermal conductivity of polyurethane foams with different morphologies. Processes, 10(11), 2257.
  • Somarathna, H. M. C. C., Raman, S. N., Mohotti, D., Mutalib, A. A., Badri, K. H. (2018). The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review. Construction and Building Materials, 190, 995-1014. https://doi.org/10.1016/J.CONBUILDMAT.2018.09.166
  • Şirin, G., Aydemir, D. (2016). Sonlu elemanlar metodunun ahşap malzemelerde kullanımına ilişkin bir araştırma. Journal of Bartin Faculty of Forestry, 18(2), 205-212. https://doi.org/10.24011/BAROFD.272971
  • Tuwair, H., Hopkins, M., Volz, J., ElGawady, M. A., Mohamed, M., Chandrashekhara, K., Birman, V. (2015). Evaluation of sandwich panels with various polyurethane foam-cores and ribs. Composites Part B: Engineering, 79, 262-276. https://doi.org/10.1016/j.compositesb.2015.04.023
  • Ulay, G., Güler, C. (2010). Köpüklü (poliüretan) ve petekli (honeycomb) kompozit lamine malzemelerin bazı teknolojik özelliklerinin incelenmesi. MYO-ÖS 2010- Ulusal Meslek Yüksekokulları Öğrenci Sempozyumu, 1-9. Düzce.
  • Yamsaengsung, W., Sombatsompop, N. (2008). Foam characteristics, peel strength, and thermal conductivity for wood/NR and expanded EPDM laminates for roofing applications. Journal of Macromolecular Science, Part B, 47(5), 967-985. https://doi.org/10.1080/00222340802219206
  • Zhang, H., Fang, W. Z., Li, Y. M., Tao, W. Q. (2017). Experimental study of the thermal conductivity of polyurethane foams. Applied Thermal Engineering, 115, 528-538.

Physical and Mechanical Properties of Polyurethane Foam Based Pop-lar Composite Panels

Year 2024, Volume: 26 Issue: 2, 98 - 106, 23.04.2024
https://doi.org/10.24011/barofd.1357963

Abstract

Sandwich panels are preferred in many sectors, such as automotive, construction, and aircraft. In addition, it is used in many areas as an isolation material. We aim to produce boards that are both lightweight and have the desired durability in their field of use, made from polyurethane, which has low heat conduction, and wood material with high resistance properties, especially for use in isolation. In our study, poplar panels were used as coating materials and polyurethane foam was used as foam. Sandwich panels were prepared using 1 cm, 3 cm, and 5 cm thick polyurethane foam and 5 mm poplar panels. These panels' mechanical properties (bending and compressive strength), thermal conductivity, and physical properties were examined. Its ability to absorb water and swell to its thickness was investigated among its physical properties. The test results showed that the sandwich panels prepared with 5 cm thick polyurethane foam had lower water absorption and swelling rates, so their water resistance was better. The sandwich panel with the highest thermal conductivity coefficient is prepared with 5 cm thick polyurethane foam. The panel with the lowest heat conduction coefficient is prepared with 3 cm thick polyurethane foam. Accordingly, 3 cm thick polyurethane foam panels have the best insulation. It was concluded panels prepared with 1 cm thick polyurethane foam had the best mechanical values.

References

  • Aydemi̇r, D., Gündüz, G. (2009). Ahşabın fiziksel, kimyasal, mekaniksel ve biyolojik özellikleri üzerine ısıyla muamelenin etkisi. Journal of Bartin Faculty of Forestry, 11(15), 61-70.
  • Aydın, H., Ekmekçi, İ. (2002). Isı yalıtım malzemesi olarak poliüretan köpüğün fiziksel ve kimyasal özellikleri, üretimi ve incelenmesi. Sakarya University Journal of Science, 6(1), 45-50. https://doi.org/10.16984/SAUFBED.04643
  • Ayrilmiş, N., Ulay, G., Fatih Bağlı, E., Özkan, İ. (2015). Ahşap sandviç kompozit levhaların yapısı ve mobilya endüstrisinde kullanımı. Journal of Forestry Faculty, 15(1), 37-48.
  • Carriço, C. S., Fraga, T., Carvalho, V. E., Pasa, V. M. (2017). Polyurethane foams for thermal insulation uses produced from castor oil and crude glycerol biopolyols. Molecules, 22(7), 1091.
  • Correia, J. R., Garrido, M., Gonilha, J. A., Branco, F. A., Reis, L. G. (2012). GFRP Sandwich panels with PU foam and PP honeycomb cores for civil engineering structural applications. International Journal of Structural Integrity, 3(2), 127-147. https://doi.org/10.1108/17579861211235165
  • Dukarska, D., Mirski, R. (2023). Wood-based materials in building. Materials, 16(8), 2987. https://doi.org/10.3390/MA16082987
  • Dweib, M. A., Hu, B., O’Donnell, A., Shenton, H. W., Wool, R. P. (2004). All natural composite sandwich beams for structural applications. Composite Structures, 63(2), 147-157. https://doi.org/10.1016/S0263-8223(03)00143-0
  • Ekici, B., Kentli, A., Küçük, H. (2012). Improving sound absorption property of polyurethane foams by adding tea-leaf fibers. Archives of Acoustics, 37(4), 515-520. https://doi.org/10.2478/v10168-012-0052-1
  • Güler, C., Ulay, G. (2010). Köpüklü kompozit (sandviç) levhaların bazı teknolojik özellikleri. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi Seri: A (2), 88-96.
  • ISO 13061-17. (2017). Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood
  • Specimens—Part 17: Determination of Ultimate Stress in Compression Parallel to Grain. nternational Organization for Standardization ISO Central Secretariat Chemin de Blandonnet 8 CP 401 - 1214 Vernier, Geneva, Switzerland.
  • Khan, T., Acar, V., Aydin, M. R., Hülagü, B., Akbulut, H., Seydibeyoğlu, M. Ö. (2020). A review on recent advances in sandwich structures based on polyurethane foam cores. Polymer Composites, 41(6), 2355-2400. https://doi.org/10.1002/PC.25543
  • Mirski, R., Derkowski, A., Dziurka, D., Dukarska, D., Czarnecki, R. (2019). Effects of a chipboard structure on ıts physical and mechanical properties. Materials 2019, Vol. 12, Page 3777, 12(22), 3777. https://doi.org/10.3390/MA12223777
  • Mirski, R., Derkowski, A., Kawalerczyk, J., Dziurka, D., Walkiewicz, J. (2022). The Possibility of Using Pine Bark Particles in the Chipboard Manufacturing Process. Materials 2022, Vol. 15, Page 5731, 15(16), 5731. https://doi.org/10.3390/MA15165731
  • Nazerian, M., Naderi, F., Partovinia, A., Papadopoulos, A. N., Younesi-Kordkheili, H. (2021). Modeling the bending strength of mdf faced, polyurethane foam-cored sandwich panels using response surface methodology (RSM) and artificial neural network (ANN). Forests 2021, Vol. 12, Page 1514, 12(11), 1514. https://doi.org/10.3390/F12111514
  • Pareta, A. S., Gupta, R., Panda, S. K. (2020). Experimental ınvestigation on fly ash particulate reinforcement for property enhancement of PU foam core FRP sandwich composites. Composites Science and Technology, 195, 108207. https://doi.org/10.1016/J.COMPSCITECH.2020.108207
  • Samali, B., Nemati, S., Sharafi, P., Tahmoorian, F., Sanati, F. (2019). Structural performance of polyurethane foam-filled building composite panels: A State of the Art. Journal of Composites Science 2019, Vol. 3, Page 40, 3(2), 40. https://doi.org/10.3390/JCS3020040
  • Santos, P., Correia, J. R., Godinho, L., Dias, A. M. P. G., Dias, A. (2021). Life cycle analysis of cross-insulated timber panels. Structures, 31, 1311-1324. https://doi.org/10.1016/J.ISTRUC.2020.12.008
  • Shenton, H. W., Wool, R. P., Hu, B., O’Donnell, A., Bonnaillie, L., Can, E., Chapas, R., Hong, C. (2002). An all-natural composite material roof system for residential construction. Advances in Building Technology, 255-262. https://doi.org/10.1016/B978-008044100-9/50032-2
  • Soloveva, O. V., Solovev, S. A., Vankov, Y. V., Shakurova, R. Z. (2022). Experimental studies of the effective thermal conductivity of polyurethane foams with different morphologies. Processes, 10(11), 2257.
  • Somarathna, H. M. C. C., Raman, S. N., Mohotti, D., Mutalib, A. A., Badri, K. H. (2018). The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review. Construction and Building Materials, 190, 995-1014. https://doi.org/10.1016/J.CONBUILDMAT.2018.09.166
  • Şirin, G., Aydemir, D. (2016). Sonlu elemanlar metodunun ahşap malzemelerde kullanımına ilişkin bir araştırma. Journal of Bartin Faculty of Forestry, 18(2), 205-212. https://doi.org/10.24011/BAROFD.272971
  • Tuwair, H., Hopkins, M., Volz, J., ElGawady, M. A., Mohamed, M., Chandrashekhara, K., Birman, V. (2015). Evaluation of sandwich panels with various polyurethane foam-cores and ribs. Composites Part B: Engineering, 79, 262-276. https://doi.org/10.1016/j.compositesb.2015.04.023
  • Ulay, G., Güler, C. (2010). Köpüklü (poliüretan) ve petekli (honeycomb) kompozit lamine malzemelerin bazı teknolojik özelliklerinin incelenmesi. MYO-ÖS 2010- Ulusal Meslek Yüksekokulları Öğrenci Sempozyumu, 1-9. Düzce.
  • Yamsaengsung, W., Sombatsompop, N. (2008). Foam characteristics, peel strength, and thermal conductivity for wood/NR and expanded EPDM laminates for roofing applications. Journal of Macromolecular Science, Part B, 47(5), 967-985. https://doi.org/10.1080/00222340802219206
  • Zhang, H., Fang, W. Z., Li, Y. M., Tao, W. Q. (2017). Experimental study of the thermal conductivity of polyurethane foams. Applied Thermal Engineering, 115, 528-538.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Wood Based Composites
Journal Section Research Articles
Authors

Gülyaz Al 0000-0003-2347-4981

Deniz Aydemir 0000-0002-7484-2126

Kivanc Bakir 0000-0002-1781-2975

Early Pub Date April 5, 2024
Publication Date April 23, 2024
Published in Issue Year 2024 Volume: 26 Issue: 2

Cite

APA Al, G., Aydemir, D., & Bakir, K. (2024). Poliüretan Köpük Esaslı Kavak Kompozit Panellerin Fiziksel ve Mekanik Özellikleri. Bartın Orman Fakültesi Dergisi, 26(2), 98-106. https://doi.org/10.24011/barofd.1357963


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Fax: +90 (378) 223 5077, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com