Research Article
BibTex RIS Cite

Combinations of essential oils obtained from medicinal plants with L. angustifolia: Determination of their antimicrobial effects

Year 2025, Volume: 6 Issue: 3, 175 - 185, 30.12.2025
https://doi.org/10.53445/batd.1789276

Abstract

In this study, the antimicrobial effects of essential oils obtained from 7 different plants (Lavandula angustifolia, Lavandula intermedia, Cupressus sempervirens, Syzygium aromaticum, Salvia officinalis, Allium sativum, Pimpinella anisum) and their combinations with Lavandula angustifolia, were investigated against 11 pathogenic bacteria (Staphylococcus aureus ATCC 25923, Staphylococcus aureus ATCC 29213, Staphylococcus haemolyticus ATCC 43252, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 700603, Escherichia coli ATCC NRRLB 3704, Acinetobacter baumannii ATCC 19606, Bacillus subtilis ATCC 6633, Proteus vulgaris ATCC 13315, Enterococcus faecalis ATCC 29212, Aeromonas hydrophila ATCC 95080). The synergistic effect of essential oils and their combinations with L. angustifolia were determined using the agar well diffusion method. Each essential oil was subjected to gas chromatography analysis in order to identify their chemical compositions. According to the results, generally all essential oils exhibited the greatest inhibition zones for Gram-positive bacteria than for Gram-negative bacteria. Among the essential oil combinations, the highest synergistic effect (166.7%) was obtained in L. angustifolia-P.anisum combination against P. aeruginosa ATCC 27853. Additionally, the L. angustifolia-S. aromaticum combination was observed to exhibit a synergistic effect on 5 bacteria (K. pneumoniae, E. coli, E. faecalis, S. haemolyticus and A. hydrophila). These findings suggest that L. angustifolia combined with specific essential oils particularly L. intermedia and S. aromaticum may serve as promising natural antimicrobial agents, offering enhanced inhibitory activity against clinically important bacterial pathogens.

References

  • Abdelatti, M. A. I., Abd El-Aziz, N. K., El-Naenaeey, E.-s. Y. M., Ammar, A. M., Alharbi, N. K., Alharthi, A., Zakai, S. A., & Abdelkhalek, A. (2023). Antibacterial and Anti-Efflux Activities of Cinnamon Essential Oil against Pan and Extensive Drug-Resistant Pseudomonas aeruginosa Isolated from Human and Animal Sources. Antibiotics, 12(10), 1514. https://doi.org/10.3390/antibiotics12101514
  • Arsene, M. M. J. (2021). Synergy Test for Antibacterial Activity: Towards the Research for a Consensus between the Fractional Inhibitory Concentration (Checkboard Method) and the Increase in Fold Area (Disc Diffusion Method). Clinical Researches in Animal Science, 1(4). https://doi.org/10.48550/arXiv.2108.05925
  • Blašković, L., & Mandušić, D. (2018). Utjecaj korištenja sustava za e-učenje na uspješnost učenja studenata agronomskog fakulteta. Agronomski glasnik: Glasilo Hrvatskog agronomskog društva, 80(2), 117-127.
  • Burt, S. A., Vlielander, R., Haagsman, H. P., & Veldhuizen, E. J. (2005). Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157: H7 by addition of food stabilizers. Journal of food protection, 68(5), 919-926. https://doi.org/10.4315/0362-028X-68.5.919
  • Chekki, R. Z., Snoussi, A., Hamrouni, I., & Bouzouita, N. (2014). Chemical composition, antibacterial and antioxidant activities of Tunisian garlic (Allium sativum) essential oil and ethanol extract. Mediterranean Journal of Chemistry, 3(4), 947-956.
  • Clinical and Laboratory Standards Institute. (2006). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard (7th ed., CLSI Document M7-A7).
  • Council of Europe. (2019). Anise oil (01/2008:0804). In European pharmacopoeia (10th ed.).
  • Demirbolat, İ., Ekinci, C., Nuhoğlu, F., Kartal, M., Yıldız, P., & Geçer, M. Ö. (2019). Effects of Orally Consumed Rosa damascena Mill. Hydrosol on Hematology, Clinical Chemistry, Lens Enzymatic Activity, and Lens Pathology in Streptozotocin-Induced Diabetic Rats. Molecules, 24(22), 4069. https://doi.org/10.3390/molecules24224069
  • Demirbolat, I., Karik, Ü., Erçin, E., & Kartal, M. (2020). Gender Dependent Differences in Composition, Antioxidant and Antimicrobial Activities of Wild and Cultivated Laurus nobilis L. Leaf and Flower Essential Oils from Aegean Region of Turkey. Journal of Essential Oil Bearing Plants, 23(5), 1084–1094. https://doi.org/10.1080/0972060X.2020.1843548
  • El Hachlafi, N., Mrabti, H. N., Al-Mijalli, S. H., Jeddi, M., Abdallah, E. M., Benkhaira, N., Hadni, H., Assaggaf, H., Qasem, A., Goh, K. W., AL-Farga, A., Bouyahya, A., & Fikri-Benbrahim, K. (2023). Antioxidant, Volatile Compounds; Antimicrobial, Anti-Inflammatory, and Dermatoprotective Properties of Cedrus atlantica (Endl.) Manetti Ex Carriere Essential Oil: In Vitro and In Silico Investigations. Molecules, 28(15), 5913. https://doi.org/10.3390/molecules28155913
  • El-Mesallamy, A. M. D., El-Gerby, M., Azim, M. H. M. A. E., & Awad, A. (2012). Antioxidant, Antimicrobial Activities and Volatile Constituents of Clove Flower Buds Oil. Journal of Essential Oil Bearing Plants, 15(6), 900–907. https://doi.org/10.1080/0972060X.2012.10662592
  • European Medicines Agency. (2011). Final assessment report on Syzygium aromaticum (L.) Merill et L.M. Perry, flos and Syzygium aromaticum (L.) Merill et L.M. Perry, aetheroleum (Report No. EMA/HMPC/534946/2010). https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-syzygium-aromaticum-l-merill-et-lm-perry-flos-syzygium-aromaticum-l-merill_en.pdf
  • European Medicines Agency. (2012). Final assessment report on Lavandula angustifolia Miller, aetheroleum and Lavandula angustifolia Miller, flos (Report No. EMA/HMPC/143183/2010). https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-lavandula-angustifolia-miller-aetheroleum-lavandula-angustifolia-miller-flos_en.pdf
  • European Medicines Agency. (2016). Final assessment report on Salvia officinalis L., folium and Salvia officinalis L., aetheroleum (Revision 1; Report No. EMA/HMPC/150801/2015). https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-salvia-officinalis-l-folium-salvia-officinalis-l-aetheroleum-revision-1_en.pdf
  • Fu, Y., Zu, Y., Chen, L., Shi, X., Wang, Z., Sun, S., & Efferth, T. (2007). Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytotherapy research, 21(10), 989-994. https://doi.org/10.1002/ptr.2179
  • Garzoli, S., Turchetti, G., Giacomello, P., Tiezzi, A., Laghezza Masci, V., & Ovidi, E. (2019). Liquid and Vapour Phase of Lavandin (Lavandula × intermedia) Essential Oil: Chemical Composition and Antimicrobial Activity. Molecules, 24(15), 2701. https://doi.org/10.3390/molecules24152701
  • Goodner, K. L. (2008). Practical retention index models of OV-101, DB-1, DB-5, and DB-Wax for flavor and fragrance compounds. LWT-Food Science and Technology, 41(6), 951-958. https://doi.org/10.1016/j.lwt.2007.07.007
  • Hulankova, R. (2024). Methods for Determination of Antimicrobial Activity of Essential Oils In Vitro—A Review. Plants, 13(19), 2784. https://doi.org/10.3390/plants13192784
  • Jianu, C., Pop, G., Gruia, A. T., & Horhat, F. G. (2013). Chemical composition and antimicrobial activity of essential oils of lavender (Lavandula angustifolia) and lavandin (Lavandula x intermedia) grown in Western Romania. International Journal of Agriculture and Biology, 15(4), 772-776.
  • Khedher, M. R. B., Khedher, S. B., Chaieb, I., Tounsi, S., & Hammami, M. (2017). Chemical composition and biological activities of Salvia officinalis essential oil from Tunisia. EXCLI Journal, 16, 160. http://dx.doi.org/10.17179/excli2016-832
  • Khubeiz, M. J., Mansour, G., & Zahraa, B. (2016). Chemical composition and antimicrobial activity of the essential oil of Cupressus sempervirens L. leaves in Syria. International Journal of Toxicological and Pharmacological Research, 8(4), 281-286.
  • Lis-Balchin, M. (2006). Aromatherapy science: a guide for healthcare professionals. Pharmaceutical press.
  • Lis‐Balchin, M., Deans, S. G., & Eaglesham, E. (1998). Relationship between bioactivity and chemical composition of commercial essential oils. Flavour and Fragrance Journal, 13(2), 98-104. https://doi.org/10.1002/(SICI)1099-1026(199803/04)13:2%3C98::AID-FFJ705%3E3.0.CO;2-B
  • Magaldi, S., Mata-Essayag, S., De Capriles, C. H., Pérez, C., Colella, M. T., Olaizola, C., & Ontiveros, Y. (2004). Well diffusion for antifungal susceptibility testing. International journal of infectious diseases, 8(1), 39-45. https://doi.org/10.1016/j.ijid.2003.03.002
  • Mazari, K., Bendimerad, N., Bekhechi, C., & Fernandez, X. (2010). Chemical composition and antimicrobial activity of essential oils isolated from Algerian Juniperus phoenicea L. and Cupressus sempervirens L. Journal of Medicinal Plants Research, 4(10), 959-964.
  • Pandit, V. A., & Shelef, L. A. (1994). Sensitivity of Listeria monocytogenes to rosemary (Rosmarinus officinalis L.). Food microbiology, 11(1), 57-63. https://doi.org/10.1006/fmic.1994.1008
  • Ponce, A. G., Fritz, R., del Valle, C. & Roura, S. I. (2003) Antimicrobial Activity of Essential Oils on the Native Microflora of Organic Swiss Chard. LWT—Food Science and Technology, 36, 679-684. https://doi.org/10.1016/S0023-6438(03)00088-4
  • Raut, J. S., & Karuppayil, S. M. (2014). A status review on the medicinal properties of essential oils. Industrial crops and products, 62, 250-264. https://doi.org/10.1016/j.indcrop.2014.05.055
  • Rathore, S., Mukhia, S., Kapoor, S., Bhatt, V., Kumar, R., & Kumar, R. (2022). Seasonal variability in essential oil composition and biological activity of Rosmarinus officinalis L. accessions in the western Himalaya. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-07298-x
  • Romeo, F. V., De Luca, S., Piscopo, A., & Poiana, M. (2008). Antimicrobial effect of some essential oils. Journal of Essential Oil Research, 20(4), 373-379. https://doi.org/10.1080/10412905.2008.9700034
  • Saricaoglu, F. T., & Turhan, S. (2018). Antimicrobial activity and antioxidant capacity of thyme, rosemary and clove essential oils and their mixtures. Journal of Innovative Science and Engineering, 2(1), 25-33.
  • Sarkic, A., & Stappen, I. (2018). Essential Oils and Their Single Compounds in Cosmetics—A Critical Review. Cosmetics, 5(1), 11. https://doi.org/10.3390/cosmetics5010011
  • Sienkiewicz, M., Głowacka, A., Kowalczyk, E., Wiktorowska-Owczarek, A., Jóźwiak-Bębenista, M., & Łysakowska, M. (2014). The Biological Activities of Cinnamon, Geranium and Lavender Essential Oils. Molecules, 19(12), 20929-20940. https://doi.org/10.3390/molecules191220929
  • Skandamis, P., Tsigarida, E., & Nychas, G. E. (2002). The effect of oregano essential oil on survival/death of Salmonella typhimurium in meat stored at 5 °C under aerobic, VP/MAP conditions. Food Microbiology, 19(1), 97-103. https://doi.org/10.1006/fmic.2001.0447
  • Tardugno, R., Pellati, F., Iseppi, R., Bondi, M., Bruzzesi, G., & Benvenuti, S. (2018). Phytochemical composition and in vitro screening of the antimicrobial activity of essential oils on oral pathogenic bacteria. Natural product research, 32(5), 544–551. https://doi.org/10.1080/14786419.2017.1329730
  • Tisserand, R., & Young, R. (2014). Essential oil profiles. In R. Tisserand & R. Young (Eds.), Essential oil profiles (2nd ed., pp. 187–482). Churchill Livingstone.
  • Valgas, C., Souza, S. M. D., Smânia, E. F., & Smânia Jr, A. (2007). Screening methods to determine antibacterial activity of natural products. Brazilian journal of microbiology, 38, 369-380. https://doi.org/10.1590/S1517-83822007000200034

Tıbbi bitkilerden elde edilen uçucu yağların L. angustifolia ile kombinasyonları: Antimikrobiyal etkilerinin belirlenmesi

Year 2025, Volume: 6 Issue: 3, 175 - 185, 30.12.2025
https://doi.org/10.53445/batd.1789276

Abstract

Bu çalışmada 7 farklı bitkiye (Lavandula angustifolia, Lavandula intermedia, Cupressus sempervirens, Syzygium aromaticum, Salvia officinalis, Allium sativum, Pimpinella anisum) ait uçucu yağın ve bunların Lavandula angustifolia ile kombinasyonlarının 11 patojen bakteriye (Staphylococcus aureus ATCC 25923, Staphylococcus aureus ATCC 29213, Staphylococcus haemolyticus ATCC 43252, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 700603, Escherichia coli ATCC NRRLB 3704, Acinetobacter baumannii ATCC 19606, Bacillus subtilis ATCC 6633, Proteus vulgaris ATCC 13315, Enterococcus faecalis ATCC 29212, Aeromonas hydrophila ATCC 95080) karşı antimikrobiyal etkileri araştırılmıştır. Uçucu yağların ve L. angustifolia ile kombinasyonlarının sinerjik etkisi agar kuyu difüzyon yöntemi ile belirlenmiştir. Her bir uçucu yağ, kimyasal bileşimlerini belirlemek amacıyla gaz kromatografisi analizine tabi tutulmuştur. Sonuçlara göre genel olarak test edilen tüm uçucu yağlar Gram-pozitif bakteriler için Gram-negatif bakterilerden daha büyük inhibisyon zonu göstermiştir. Uçucu yağ kombinasyonları arasında en yüksek sinerjik etki (166,7%) Pseudomonas aeruginosa ATCC 27853’e karşı L. angustifolia-P. anisum kombinasyonunda elde edilmiştir. Ayrıca L. angustifolia-S. aromaticum kombinasyonunun 5 bakteri (K. pneumoniae, E. coli, E. faecalis, S. haemolyticus ve A. hydrophila) üzerinde sinerjik etki gösterdiği gözlenmiştir. Bu bulgular, L. angustifolia’nın belirli uçucu yağlarla (özellikle L. intermedia ve S. aromaticum) birlikte kullanıldığında, klinik açıdan önemli bakteriyel patojenlere karşı gelişmiş inhibitör aktivite sunarak umut verici doğal antimikrobiyal ajanlar olarak işlev görebileceğini düşündürmektedir.

References

  • Abdelatti, M. A. I., Abd El-Aziz, N. K., El-Naenaeey, E.-s. Y. M., Ammar, A. M., Alharbi, N. K., Alharthi, A., Zakai, S. A., & Abdelkhalek, A. (2023). Antibacterial and Anti-Efflux Activities of Cinnamon Essential Oil against Pan and Extensive Drug-Resistant Pseudomonas aeruginosa Isolated from Human and Animal Sources. Antibiotics, 12(10), 1514. https://doi.org/10.3390/antibiotics12101514
  • Arsene, M. M. J. (2021). Synergy Test for Antibacterial Activity: Towards the Research for a Consensus between the Fractional Inhibitory Concentration (Checkboard Method) and the Increase in Fold Area (Disc Diffusion Method). Clinical Researches in Animal Science, 1(4). https://doi.org/10.48550/arXiv.2108.05925
  • Blašković, L., & Mandušić, D. (2018). Utjecaj korištenja sustava za e-učenje na uspješnost učenja studenata agronomskog fakulteta. Agronomski glasnik: Glasilo Hrvatskog agronomskog društva, 80(2), 117-127.
  • Burt, S. A., Vlielander, R., Haagsman, H. P., & Veldhuizen, E. J. (2005). Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157: H7 by addition of food stabilizers. Journal of food protection, 68(5), 919-926. https://doi.org/10.4315/0362-028X-68.5.919
  • Chekki, R. Z., Snoussi, A., Hamrouni, I., & Bouzouita, N. (2014). Chemical composition, antibacterial and antioxidant activities of Tunisian garlic (Allium sativum) essential oil and ethanol extract. Mediterranean Journal of Chemistry, 3(4), 947-956.
  • Clinical and Laboratory Standards Institute. (2006). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard (7th ed., CLSI Document M7-A7).
  • Council of Europe. (2019). Anise oil (01/2008:0804). In European pharmacopoeia (10th ed.).
  • Demirbolat, İ., Ekinci, C., Nuhoğlu, F., Kartal, M., Yıldız, P., & Geçer, M. Ö. (2019). Effects of Orally Consumed Rosa damascena Mill. Hydrosol on Hematology, Clinical Chemistry, Lens Enzymatic Activity, and Lens Pathology in Streptozotocin-Induced Diabetic Rats. Molecules, 24(22), 4069. https://doi.org/10.3390/molecules24224069
  • Demirbolat, I., Karik, Ü., Erçin, E., & Kartal, M. (2020). Gender Dependent Differences in Composition, Antioxidant and Antimicrobial Activities of Wild and Cultivated Laurus nobilis L. Leaf and Flower Essential Oils from Aegean Region of Turkey. Journal of Essential Oil Bearing Plants, 23(5), 1084–1094. https://doi.org/10.1080/0972060X.2020.1843548
  • El Hachlafi, N., Mrabti, H. N., Al-Mijalli, S. H., Jeddi, M., Abdallah, E. M., Benkhaira, N., Hadni, H., Assaggaf, H., Qasem, A., Goh, K. W., AL-Farga, A., Bouyahya, A., & Fikri-Benbrahim, K. (2023). Antioxidant, Volatile Compounds; Antimicrobial, Anti-Inflammatory, and Dermatoprotective Properties of Cedrus atlantica (Endl.) Manetti Ex Carriere Essential Oil: In Vitro and In Silico Investigations. Molecules, 28(15), 5913. https://doi.org/10.3390/molecules28155913
  • El-Mesallamy, A. M. D., El-Gerby, M., Azim, M. H. M. A. E., & Awad, A. (2012). Antioxidant, Antimicrobial Activities and Volatile Constituents of Clove Flower Buds Oil. Journal of Essential Oil Bearing Plants, 15(6), 900–907. https://doi.org/10.1080/0972060X.2012.10662592
  • European Medicines Agency. (2011). Final assessment report on Syzygium aromaticum (L.) Merill et L.M. Perry, flos and Syzygium aromaticum (L.) Merill et L.M. Perry, aetheroleum (Report No. EMA/HMPC/534946/2010). https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-syzygium-aromaticum-l-merill-et-lm-perry-flos-syzygium-aromaticum-l-merill_en.pdf
  • European Medicines Agency. (2012). Final assessment report on Lavandula angustifolia Miller, aetheroleum and Lavandula angustifolia Miller, flos (Report No. EMA/HMPC/143183/2010). https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-lavandula-angustifolia-miller-aetheroleum-lavandula-angustifolia-miller-flos_en.pdf
  • European Medicines Agency. (2016). Final assessment report on Salvia officinalis L., folium and Salvia officinalis L., aetheroleum (Revision 1; Report No. EMA/HMPC/150801/2015). https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-salvia-officinalis-l-folium-salvia-officinalis-l-aetheroleum-revision-1_en.pdf
  • Fu, Y., Zu, Y., Chen, L., Shi, X., Wang, Z., Sun, S., & Efferth, T. (2007). Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytotherapy research, 21(10), 989-994. https://doi.org/10.1002/ptr.2179
  • Garzoli, S., Turchetti, G., Giacomello, P., Tiezzi, A., Laghezza Masci, V., & Ovidi, E. (2019). Liquid and Vapour Phase of Lavandin (Lavandula × intermedia) Essential Oil: Chemical Composition and Antimicrobial Activity. Molecules, 24(15), 2701. https://doi.org/10.3390/molecules24152701
  • Goodner, K. L. (2008). Practical retention index models of OV-101, DB-1, DB-5, and DB-Wax for flavor and fragrance compounds. LWT-Food Science and Technology, 41(6), 951-958. https://doi.org/10.1016/j.lwt.2007.07.007
  • Hulankova, R. (2024). Methods for Determination of Antimicrobial Activity of Essential Oils In Vitro—A Review. Plants, 13(19), 2784. https://doi.org/10.3390/plants13192784
  • Jianu, C., Pop, G., Gruia, A. T., & Horhat, F. G. (2013). Chemical composition and antimicrobial activity of essential oils of lavender (Lavandula angustifolia) and lavandin (Lavandula x intermedia) grown in Western Romania. International Journal of Agriculture and Biology, 15(4), 772-776.
  • Khedher, M. R. B., Khedher, S. B., Chaieb, I., Tounsi, S., & Hammami, M. (2017). Chemical composition and biological activities of Salvia officinalis essential oil from Tunisia. EXCLI Journal, 16, 160. http://dx.doi.org/10.17179/excli2016-832
  • Khubeiz, M. J., Mansour, G., & Zahraa, B. (2016). Chemical composition and antimicrobial activity of the essential oil of Cupressus sempervirens L. leaves in Syria. International Journal of Toxicological and Pharmacological Research, 8(4), 281-286.
  • Lis-Balchin, M. (2006). Aromatherapy science: a guide for healthcare professionals. Pharmaceutical press.
  • Lis‐Balchin, M., Deans, S. G., & Eaglesham, E. (1998). Relationship between bioactivity and chemical composition of commercial essential oils. Flavour and Fragrance Journal, 13(2), 98-104. https://doi.org/10.1002/(SICI)1099-1026(199803/04)13:2%3C98::AID-FFJ705%3E3.0.CO;2-B
  • Magaldi, S., Mata-Essayag, S., De Capriles, C. H., Pérez, C., Colella, M. T., Olaizola, C., & Ontiveros, Y. (2004). Well diffusion for antifungal susceptibility testing. International journal of infectious diseases, 8(1), 39-45. https://doi.org/10.1016/j.ijid.2003.03.002
  • Mazari, K., Bendimerad, N., Bekhechi, C., & Fernandez, X. (2010). Chemical composition and antimicrobial activity of essential oils isolated from Algerian Juniperus phoenicea L. and Cupressus sempervirens L. Journal of Medicinal Plants Research, 4(10), 959-964.
  • Pandit, V. A., & Shelef, L. A. (1994). Sensitivity of Listeria monocytogenes to rosemary (Rosmarinus officinalis L.). Food microbiology, 11(1), 57-63. https://doi.org/10.1006/fmic.1994.1008
  • Ponce, A. G., Fritz, R., del Valle, C. & Roura, S. I. (2003) Antimicrobial Activity of Essential Oils on the Native Microflora of Organic Swiss Chard. LWT—Food Science and Technology, 36, 679-684. https://doi.org/10.1016/S0023-6438(03)00088-4
  • Raut, J. S., & Karuppayil, S. M. (2014). A status review on the medicinal properties of essential oils. Industrial crops and products, 62, 250-264. https://doi.org/10.1016/j.indcrop.2014.05.055
  • Rathore, S., Mukhia, S., Kapoor, S., Bhatt, V., Kumar, R., & Kumar, R. (2022). Seasonal variability in essential oil composition and biological activity of Rosmarinus officinalis L. accessions in the western Himalaya. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-07298-x
  • Romeo, F. V., De Luca, S., Piscopo, A., & Poiana, M. (2008). Antimicrobial effect of some essential oils. Journal of Essential Oil Research, 20(4), 373-379. https://doi.org/10.1080/10412905.2008.9700034
  • Saricaoglu, F. T., & Turhan, S. (2018). Antimicrobial activity and antioxidant capacity of thyme, rosemary and clove essential oils and their mixtures. Journal of Innovative Science and Engineering, 2(1), 25-33.
  • Sarkic, A., & Stappen, I. (2018). Essential Oils and Their Single Compounds in Cosmetics—A Critical Review. Cosmetics, 5(1), 11. https://doi.org/10.3390/cosmetics5010011
  • Sienkiewicz, M., Głowacka, A., Kowalczyk, E., Wiktorowska-Owczarek, A., Jóźwiak-Bębenista, M., & Łysakowska, M. (2014). The Biological Activities of Cinnamon, Geranium and Lavender Essential Oils. Molecules, 19(12), 20929-20940. https://doi.org/10.3390/molecules191220929
  • Skandamis, P., Tsigarida, E., & Nychas, G. E. (2002). The effect of oregano essential oil on survival/death of Salmonella typhimurium in meat stored at 5 °C under aerobic, VP/MAP conditions. Food Microbiology, 19(1), 97-103. https://doi.org/10.1006/fmic.2001.0447
  • Tardugno, R., Pellati, F., Iseppi, R., Bondi, M., Bruzzesi, G., & Benvenuti, S. (2018). Phytochemical composition and in vitro screening of the antimicrobial activity of essential oils on oral pathogenic bacteria. Natural product research, 32(5), 544–551. https://doi.org/10.1080/14786419.2017.1329730
  • Tisserand, R., & Young, R. (2014). Essential oil profiles. In R. Tisserand & R. Young (Eds.), Essential oil profiles (2nd ed., pp. 187–482). Churchill Livingstone.
  • Valgas, C., Souza, S. M. D., Smânia, E. F., & Smânia Jr, A. (2007). Screening methods to determine antibacterial activity of natural products. Brazilian journal of microbiology, 38, 369-380. https://doi.org/10.1590/S1517-83822007000200034
There are 37 citations in total.

Details

Primary Language English
Subjects Botany (Other), Environmental Health
Journal Section Research Article
Authors

Derya Doğanay 0000-0001-9147-4110

Şevval Maral Özcan Aykol 0000-0002-3336-5618

G. Vildan Seyhan 0000-0001-9162-2937

İlker Demirbolat 0000-0002-8756-1884

Esra Mertoğlu 0009-0005-5759-0958

Submission Date September 24, 2025
Acceptance Date December 16, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 6 Issue: 3

Cite

APA Doğanay, D., Özcan Aykol, Ş. M., Seyhan, G. V., … Demirbolat, İ. (2025). Combinations of essential oils obtained from medicinal plants with L. angustifolia: Determination of their antimicrobial effects. Journal of Integrative and Anatolian Medicine, 6(3), 175-185. https://doi.org/10.53445/batd.1789276

J. Integr. Anatol. Med. (Abbreviated Title)
◆◆


◆◆◆
by-nc.png