Araştırma Makalesi
BibTex RIS Kaynak Göster

Zaman kesirli KdV denklemlerinin residual kuvvet serisi yöntemi ile yaklaşık çözümü

Yıl 2018, Cilt: 20 Sayı: 1, 430 - 439, 25.04.2018
https://doi.org/10.25092/baunfbed.418471

Öz

Bu
çalışmada zaman-kesirli Korteveg de Vries (KdV) denkleminin ve modifiye edilmiş
halinin rezidual kuvvet serisi metodu (RPSM) ile yaklaşık çözümü elde
edilmiştir.  Nümerik sonuçlar verilmiş ve
bu sonuçlar tam çözümle nümerik ve grafiksel olarak karşılaştırılmıştır.  Bulunan sonuçlar kullanılan yöntemin gayet
başarılı, etkili ve güvenilir olduğunu ortaya koymaktadır.

Kaynakça

  • Ray, S.S., and Bera, R.K., An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Applied Mathematics and Computation, 167(1), 561-571, (2005).
  • Kexue, L., and Jigen, P., Laplace transform and fractional differential equations, Applied Mathematics Letters, 24(12), 2019-2023, (2011).
  • Zurigat, M., Momani, S., Odibat, Z., and Alawneh, A., The homotopy analysis method for handling systems of fractional differential equations, Applied Mathematical Modelling, 34(1), 24-35, (2010).
  • Yildirim, A., An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method, International Journal of Nonlinear Sciences and Numerical Simulation, 10(4), 445-450, (2009).
  • Arikoglu, A., and Ozkol, I., Solution of fractional differential equations by using differential transform method, Chaos, Solitons & Fractals, 34(5), 1473-1481, (2007).
  • Şenol, M., and Dolapci, I.T., On the Perturbation–Iteration Algorithm for fractional differential equations, Journal of King Saud University-Science, 28(1), 69-74, (2016).
  • Kumar, A., Kumar, S., and Singh, M., Residual power series method for fractional Sharma-Tasso-Olever equation, Communications in Numerical Analysis, 1-10, (2016).
  • Jaradat, H.M., Al-Shara, S., Khan, Q.J., Alquran, M., and Al-Khaled, K., Analytical solution of time-fractional Drinfeld-Sokolov-Wilson system using residual power series method, IAENG International Journal of Applied Mathematics, 46(1), 64-70, (2016).
  • Alquran, M., Analytical solutions of fractional foam drainage equation by residual power series method, Mathematical sciences, 8(4), 153-160, (2015).
  • El-Ajou, A., Arqub, O.A., Zhour, Z.A., and Momani, S., New results on fractional power series: theories and applications, Entropy, 15(12), 5305-5323, (2013).
  • Ahmad, R.S., An analytical solution of the fractional Navier-Stokes equation by residual power series method, Zarqa University, Doctoral dissertation, 10-90, (2015).
  • Al Qurashi M.M., Korpinar, Z., Baleanu, D., and Inc, M., A new iterative algorithm on the time-fractional Fisher equation: Residual power series method, Advances in Mechanical Engineering, 9(9) 1–8, (2017).
  • Tchier, F., Inc, M., Korpinar, Z., and Baleanu, D., Solutions of the time fractional reaction–diffusion equations with residual power series method, Advances in Mechanical Engineering, 8(10) 1–10, (2016).
  • Inc, M., Korpinar, Z., Al Qurashi M.M., and Baleanu, D., A new method for approximate solutions of some nonlinear equations: Residual power series method, Advances in Mechanical Engineering, 8(4) 1–7, (2016).
  • Momani, S., Odibat, Z., and Alawneh, A., Variational iteration method for solving the space‐and time‐fractional KdV equation”, Numerical Methods for Partial Differential Equations, 24(1), 262-271, (2008).
  • Abdulaziz, O., Hashim, I., and Ismail, E.S., Approximate analytical solution to fractional modified KdV equations, Mathematical and Computer Modelling, 49(1-2), 136-145, (2009).

Approximate solution of time-fractional KdV equations by residual power series method

Yıl 2018, Cilt: 20 Sayı: 1, 430 - 439, 25.04.2018
https://doi.org/10.25092/baunfbed.418471

Öz

In
this article, approximate solutions of the time-fractional Korteveg de Vries
(KdV) and modified version of it is obtained by using the residual power series
method (RPSM). Numerical results are given and then they are compared with the
exact solutions both numerically and graphically. The results show that the
present method is very successful, effective and reliable.

Kaynakça

  • Ray, S.S., and Bera, R.K., An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Applied Mathematics and Computation, 167(1), 561-571, (2005).
  • Kexue, L., and Jigen, P., Laplace transform and fractional differential equations, Applied Mathematics Letters, 24(12), 2019-2023, (2011).
  • Zurigat, M., Momani, S., Odibat, Z., and Alawneh, A., The homotopy analysis method for handling systems of fractional differential equations, Applied Mathematical Modelling, 34(1), 24-35, (2010).
  • Yildirim, A., An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method, International Journal of Nonlinear Sciences and Numerical Simulation, 10(4), 445-450, (2009).
  • Arikoglu, A., and Ozkol, I., Solution of fractional differential equations by using differential transform method, Chaos, Solitons & Fractals, 34(5), 1473-1481, (2007).
  • Şenol, M., and Dolapci, I.T., On the Perturbation–Iteration Algorithm for fractional differential equations, Journal of King Saud University-Science, 28(1), 69-74, (2016).
  • Kumar, A., Kumar, S., and Singh, M., Residual power series method for fractional Sharma-Tasso-Olever equation, Communications in Numerical Analysis, 1-10, (2016).
  • Jaradat, H.M., Al-Shara, S., Khan, Q.J., Alquran, M., and Al-Khaled, K., Analytical solution of time-fractional Drinfeld-Sokolov-Wilson system using residual power series method, IAENG International Journal of Applied Mathematics, 46(1), 64-70, (2016).
  • Alquran, M., Analytical solutions of fractional foam drainage equation by residual power series method, Mathematical sciences, 8(4), 153-160, (2015).
  • El-Ajou, A., Arqub, O.A., Zhour, Z.A., and Momani, S., New results on fractional power series: theories and applications, Entropy, 15(12), 5305-5323, (2013).
  • Ahmad, R.S., An analytical solution of the fractional Navier-Stokes equation by residual power series method, Zarqa University, Doctoral dissertation, 10-90, (2015).
  • Al Qurashi M.M., Korpinar, Z., Baleanu, D., and Inc, M., A new iterative algorithm on the time-fractional Fisher equation: Residual power series method, Advances in Mechanical Engineering, 9(9) 1–8, (2017).
  • Tchier, F., Inc, M., Korpinar, Z., and Baleanu, D., Solutions of the time fractional reaction–diffusion equations with residual power series method, Advances in Mechanical Engineering, 8(10) 1–10, (2016).
  • Inc, M., Korpinar, Z., Al Qurashi M.M., and Baleanu, D., A new method for approximate solutions of some nonlinear equations: Residual power series method, Advances in Mechanical Engineering, 8(4) 1–7, (2016).
  • Momani, S., Odibat, Z., and Alawneh, A., Variational iteration method for solving the space‐and time‐fractional KdV equation”, Numerical Methods for Partial Differential Equations, 24(1), 262-271, (2008).
  • Abdulaziz, O., Hashim, I., and Ismail, E.S., Approximate analytical solution to fractional modified KdV equations, Mathematical and Computer Modelling, 49(1-2), 136-145, (2009).
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Şenol

Ayşe Ata Bu kişi benim

Yayımlanma Tarihi 25 Nisan 2018
Gönderilme Tarihi 9 Kasım 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 20 Sayı: 1

Kaynak Göster

APA Şenol, M., & Ata, A. (2018). Approximate solution of time-fractional KdV equations by residual power series method. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(1), 430-439. https://doi.org/10.25092/baunfbed.418471
AMA Şenol M, Ata A. Approximate solution of time-fractional KdV equations by residual power series method. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2018;20(1):430-439. doi:10.25092/baunfbed.418471
Chicago Şenol, Mehmet, ve Ayşe Ata. “Approximate Solution of Time-Fractional KdV Equations by Residual Power Series Method”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20, sy. 1 (Temmuz 2018): 430-39. https://doi.org/10.25092/baunfbed.418471.
EndNote Şenol M, Ata A (01 Temmuz 2018) Approximate solution of time-fractional KdV equations by residual power series method. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20 1 430–439.
IEEE M. Şenol ve A. Ata, “Approximate solution of time-fractional KdV equations by residual power series method”, BAUN Fen. Bil. Enst. Dergisi, c. 20, sy. 1, ss. 430–439, 2018, doi: 10.25092/baunfbed.418471.
ISNAD Şenol, Mehmet - Ata, Ayşe. “Approximate Solution of Time-Fractional KdV Equations by Residual Power Series Method”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20/1 (Temmuz 2018), 430-439. https://doi.org/10.25092/baunfbed.418471.
JAMA Şenol M, Ata A. Approximate solution of time-fractional KdV equations by residual power series method. BAUN Fen. Bil. Enst. Dergisi. 2018;20:430–439.
MLA Şenol, Mehmet ve Ayşe Ata. “Approximate Solution of Time-Fractional KdV Equations by Residual Power Series Method”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 20, sy. 1, 2018, ss. 430-9, doi:10.25092/baunfbed.418471.
Vancouver Şenol M, Ata A. Approximate solution of time-fractional KdV equations by residual power series method. BAUN Fen. Bil. Enst. Dergisi. 2018;20(1):430-9.