Araştırma Makalesi
BibTex RIS Kaynak Göster

Structural characterization and DFT studies of the highly disordered compound 2-phenyl-4-[4-(1,4,7,10-tetraoxa-13-azacyclopentadecyl)benzylidene]-5-oxazolone

Yıl 2019, Cilt: 21 Sayı: 1, 254 - 264, 15.03.2019
https://doi.org/10.25092/baunfbed.544635

Öz

In this study, the crystal and molecular structure of the compound 2-phenyl-4-[4-(1,4,7,10-tetraoxa-13-azacyclopentadecyl)benzylidene]-5-oxazolone was determined by the single-crystal X-ray diffraction method. The molecular structure of the compound consists of a N-phenyl-(aza-15-crown-5) moiety connected to the oxazol-5-one ring. A phenyl group is also linked to the oxazol-5-one fragment. Crystal structure is stabilized by C–H∙∙∙O type intermolecular hydrogen bonds, C–H∙∙∙O type intramolecular interaction and pi•••pi interactions. Theoretical studies such as molecular geometry, frontier molecular orbitals and molecular electrostatic potential were performed using the Density Functional Theory (DFT) method B3LYP/6-311G(d,p) basis set. Geometric parameters were compared with the experimental data and the compatibility was observed.

Kaynakça

  • Benedlt, D. and Daniel, V., Synthesis of 2-methyl-(Z)-4-(phenylimino)naphth[2,3-d]oxazol-9-one, a monoimine quinone with selective cytotoxicity toward cancer cells, Journal of Medicinal Chemistry, 37, 710–712, (1994).
  • Gelmi, M. L., Clerici, F. and Melis, A., 5(4H)-oxazolones. Part X. Acid and base effects on the translactonization reaction of 4-(2-Oxa-alkylidene)-5(4H)-oxazolones: New synthesis of 5-alkylidene-3-benzoylamino-2(5H)-furanones, Tetrahedron, 53, 1843–1854, (1997).
  • Martinez, A. P., Lee, W. W. and Goodman, L., Some 2-fluoroethylamines derived from hydrocinnamic acid, phenylpyruvic acid and DL-phenylalanine, Tetrahedron, 20, 2763–2771, (1964).
  • Lesieur, S. and Aichaw, H., Eur PAT 1990, 390, 673, 03 OCT; Chemical Abstracts, 114, 143, (1991).
  • Ando, K. and Asai, N., EUR PAT, 385, 664, 05 SEPT 1990; Chemical Abstracts, 114, 143, (1991).
  • Descas, P. and Jarry, C. EUR PAT, 392, 929, 17 OCT 1990; Chemical Abstracts, 114, 143, (1991).
  • Abdel-Aty, A. S., Pesticidal effects of some imidazolidine and oxazolone derivatives, World Journal of Agricultural Science, 5, 105–13, (2009).
  • Witvrouw, M., Pannecouque, C, Clercq, E. D., Fernandez-Alvarez, E. and Marco, J. L., Inhibition of human immunodeficiency virus type (HIV-1) replication by some diversely functionalized spirocyclopropyl derivatives, Archiv der Pharmazie, 332, 163–6, (1999).
  • Khan, K. M., Mughal, U. R., Khan, M. T. H., Ullah, Z., Perveen, S. and Choudhary, M. I., Oxazolones: new tyrosinase inhibitors; synthesis and their structure–activity relationships, Bioorganic & Medicinal Chemistry, 14, 6027–33, (2006).
  • Pashas, M. A., Jayashankara, V. P., Venugopala, K. N. and Rao, G. K., Zinc Oxide (ZnO): an efficient catalyst for the synthesis of 4- arylmethylidene-2-phenyl-5-(4H)-oxazolones having antimicrobial activity, Journal of Pharmacological and Toxicological Methods, 2, 264–70, (2007).,
  • Schnettler, R. A., Jones Jr., W. D. and Claxton, G. P., Cardiotonic heterocyclic oxazolones, Merrell Dow Pharmaceuticals Inc., United States, Patent No.: US 4698353 (1987).
  • Pereira, E. R., Sancelme, M., Voldoire, A. and Prudhomme, M., Synthesis and antimicrobial activities of 3-N-substituted-4,5-bis(3-indolyl)oxazol-2-ones, Bioorganic & Medicinal Chemistry Letters, 7(190), 2503, (1997).
  • Viti, G., Namnicine, R., Ricci, R., Pestelline, V., Abeli, L. and Funo, M., New antagonists of platelet-activating factor containing 2-oxazolidinone or 2-morpholinone, European Journal of Medicinal Chemistry, 29, 401–406, (1994).
  • Ismail, M. I., Physical characteristics and polarographic reduction mechanism of some oxazolones, Canadian Journal of Chemistry, 69, 1886–92, (1991).
  • Matsunaga, H., Ishizuka, T. and Kunieda, T., Synthetic utility of fivemembered heterocycles-chiral functionalization and applications, Tetrahedron Letters, 61, 8073–94, (2005).
  • Icli, S., Icil, H., Alp, S., Koc, H. and McKillop, A., NMR, absorption and fluorescence parameters of azlactones, Spectroscopy Letters, 27 (9), 1115–1128, (1994).
  • CrysAlisPro Software System, Version 1.171.38.43, Rigaku Corporation, Oxford, UK, (2015).
  • Clark, R. C. and Reid, J. S., The analytical calculation of absorption in multifaceted crystals, Acta Crystallographica A51, 887–897, (1995).
  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. and Puschmann, H., OLEX2: A complete structure solution, refinement and analysis program, Journal of Applied Crystallography, 42, 339–341, (2009).
  • Sheldrick, G. M., SHELXT-Integrated space-group and crystal-structure determination, Acta Crystallographica, A71, 3–8, (2015).
  • Sheldrick, G. M., Crystal structure refinement with SHELXL, Acta Crystallographica, C71, 3–8, (2015).
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslows i, J. and Fox, D. J., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, (2010).
  • Dennington, R., Keith, T. and Millam, J., GaussView, Version 5, Semichem Inc., Shawnee Mission, KS, (2009).
  • Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, 98, 5648, (1993).
  • Ditchfield, R., Hehre, W. J. and Pople, J. A., Self‐consistent molecular‐orbital methods. IX. An extended gaussian‐type basis for molecular‐orbital studies of organic molecules, The Journal of Chemical Physics, 54, 724–728, (1971).
  • Ioannidis, M., Gentleman, A. S., Ho, L., Lincoln, S. F. and Sumby, C. J., Complexation and structural studies of a sulfonamide aza-15-crown-5 derivative, Inorganic Chemistry Communications, 13, 59–598, (2010).
  • Alfimov, M. V., Churakov, A. V., Fedorov, Y. V., Fedorova, O. A., Gromov, S. P., Hester, R. E., Howard, J. A. K., Kuz’mina, L. G., Lednev, I. K. and Moore, J. N., Structure and ion-complexing properties of an aza-15-crown-5 ether dye: synthesis, crystallography, NMR spectroscopy, spectrophotometry and potentiometry, Journal of the Chemical Society, Perkin Transactions, 2, 2249 – 2256, (1997).
  • Ho, M. L., Hwang, F. M., Chen, P. N., Hu, Y. H., Cheng, Y. M., Chen, K. S., Lee, G. H., Chi Y. and Chou, P. T., Design and synthesis of iridium(III) azacrown complex: application as a highly sensitive metal cation phosphorescence sensor, Organic & Biomolecular Chemistry, 4, 98–103, (2006).
  • Casellato, U. and Graziani R., Crystal structure of bis(aza-15-crown-5-dithiocarbamato) platinum(II) dichloromethane (1/2), ((CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2)NCS2)2Pt•2CH2Cl2, Zeitschrift für Kristallographie - New Crystal Structures, 214, 495–496, (1999).
  • Bernstein, J., Davis, R. E., Shimoni, L. and Chang, N. L., Patterns in hydrogen bonding: functionality and graph set analysis in crystals, Angewandte Chemie International Edition in English, 34, 1555–1573, (1995).
  • Fukui, K., Role of frontier orbitals in chemical reactions, Science, 218, 747–754, (1982).
  • Gunasekaran, S., Balaji, R. A., Kumeresan, S., Anand, G. and Srinivasan, S., Canadian Journal of Analytical Sciences and Spectroscopy, 53, 149–160, (2008).
  • Çiçek, B., Çakır, Ü. And Azizoglu, A., The associations of macrocyclic ethers with cations in 1,4-dioxane/water mixtures; potentiometric Na+ and K+ binding measurements and computational study, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 72, 121–125, (2012).
  • Scrocco, E. and Tomasi, J., Electronic molecular structure, reactivity and ıntermolecular forces: an euristic ınterpretation by means of electrostatic molecular potentials, Advances in Quantum Chemistry, 103, 115–193, (1978).
  • Yıldız, C. B., Sagır, Z. O., Kılıc, T. and Azizoglu, A., Computational and experimental study on 7-epicandicandiol isolated from sideritis niveotomentosa Huber–Morathii, Studia UBB Chemia, 59 LIX (2), 17–32, (2014).

Yüksek disordera sahip 2-fenil-4-[4-(1,4,7,10-tetraoksa-13-azasiklopentadesil)benziliden]-5-oksazolon Bileşiğinin Yapısal Karakterizasyonu ve DFT çalışmaları

Yıl 2019, Cilt: 21 Sayı: 1, 254 - 264, 15.03.2019
https://doi.org/10.25092/baunfbed.544635

Öz

Bu çalışmada, 2-fenil-4-[4-(1,4,7,10-tetraoksa-13-azasiklopentadesil)benziliden]-5-oksazolon bileşiğinin moleküler ve kristal yapısı tek-kristal X-ışını kırınımı yöntemiyle belirlendi. Bileşiğin moleküler yapısı, bir oksazol-5-on grubuna bağlı N-fenil sübstitüe aza-taç eter yapıdan oluşmaktadır. Bir fenil grubu da oksazol-5-on fragmentine bağlıdır. Kristal yapı, C–H∙∙∙O tipi moleküllerarası hidrojen bağları ile C–H∙∙∙O tipi molekül içi zayıf etkileşmeler ve pi•••pi etkileşmeleri ile kararlı haldedir. Teorik çalışmalar (moleküler geometri, frontier moleküler orbitaller ve moleküler elektrostatik potansiyel) Yoğunluk Fonsiyonu Teorisi (YFT) metodu ile ve B3LYP/6-311G(d,p) baz seti kullanılarak gerçekleştirilmiştir. Geometrik parametreler deneysel verilerle karşılaştırılarak uyumlu oldukları gözlenmiştir.

Kaynakça

  • Benedlt, D. and Daniel, V., Synthesis of 2-methyl-(Z)-4-(phenylimino)naphth[2,3-d]oxazol-9-one, a monoimine quinone with selective cytotoxicity toward cancer cells, Journal of Medicinal Chemistry, 37, 710–712, (1994).
  • Gelmi, M. L., Clerici, F. and Melis, A., 5(4H)-oxazolones. Part X. Acid and base effects on the translactonization reaction of 4-(2-Oxa-alkylidene)-5(4H)-oxazolones: New synthesis of 5-alkylidene-3-benzoylamino-2(5H)-furanones, Tetrahedron, 53, 1843–1854, (1997).
  • Martinez, A. P., Lee, W. W. and Goodman, L., Some 2-fluoroethylamines derived from hydrocinnamic acid, phenylpyruvic acid and DL-phenylalanine, Tetrahedron, 20, 2763–2771, (1964).
  • Lesieur, S. and Aichaw, H., Eur PAT 1990, 390, 673, 03 OCT; Chemical Abstracts, 114, 143, (1991).
  • Ando, K. and Asai, N., EUR PAT, 385, 664, 05 SEPT 1990; Chemical Abstracts, 114, 143, (1991).
  • Descas, P. and Jarry, C. EUR PAT, 392, 929, 17 OCT 1990; Chemical Abstracts, 114, 143, (1991).
  • Abdel-Aty, A. S., Pesticidal effects of some imidazolidine and oxazolone derivatives, World Journal of Agricultural Science, 5, 105–13, (2009).
  • Witvrouw, M., Pannecouque, C, Clercq, E. D., Fernandez-Alvarez, E. and Marco, J. L., Inhibition of human immunodeficiency virus type (HIV-1) replication by some diversely functionalized spirocyclopropyl derivatives, Archiv der Pharmazie, 332, 163–6, (1999).
  • Khan, K. M., Mughal, U. R., Khan, M. T. H., Ullah, Z., Perveen, S. and Choudhary, M. I., Oxazolones: new tyrosinase inhibitors; synthesis and their structure–activity relationships, Bioorganic & Medicinal Chemistry, 14, 6027–33, (2006).
  • Pashas, M. A., Jayashankara, V. P., Venugopala, K. N. and Rao, G. K., Zinc Oxide (ZnO): an efficient catalyst for the synthesis of 4- arylmethylidene-2-phenyl-5-(4H)-oxazolones having antimicrobial activity, Journal of Pharmacological and Toxicological Methods, 2, 264–70, (2007).,
  • Schnettler, R. A., Jones Jr., W. D. and Claxton, G. P., Cardiotonic heterocyclic oxazolones, Merrell Dow Pharmaceuticals Inc., United States, Patent No.: US 4698353 (1987).
  • Pereira, E. R., Sancelme, M., Voldoire, A. and Prudhomme, M., Synthesis and antimicrobial activities of 3-N-substituted-4,5-bis(3-indolyl)oxazol-2-ones, Bioorganic & Medicinal Chemistry Letters, 7(190), 2503, (1997).
  • Viti, G., Namnicine, R., Ricci, R., Pestelline, V., Abeli, L. and Funo, M., New antagonists of platelet-activating factor containing 2-oxazolidinone or 2-morpholinone, European Journal of Medicinal Chemistry, 29, 401–406, (1994).
  • Ismail, M. I., Physical characteristics and polarographic reduction mechanism of some oxazolones, Canadian Journal of Chemistry, 69, 1886–92, (1991).
  • Matsunaga, H., Ishizuka, T. and Kunieda, T., Synthetic utility of fivemembered heterocycles-chiral functionalization and applications, Tetrahedron Letters, 61, 8073–94, (2005).
  • Icli, S., Icil, H., Alp, S., Koc, H. and McKillop, A., NMR, absorption and fluorescence parameters of azlactones, Spectroscopy Letters, 27 (9), 1115–1128, (1994).
  • CrysAlisPro Software System, Version 1.171.38.43, Rigaku Corporation, Oxford, UK, (2015).
  • Clark, R. C. and Reid, J. S., The analytical calculation of absorption in multifaceted crystals, Acta Crystallographica A51, 887–897, (1995).
  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. and Puschmann, H., OLEX2: A complete structure solution, refinement and analysis program, Journal of Applied Crystallography, 42, 339–341, (2009).
  • Sheldrick, G. M., SHELXT-Integrated space-group and crystal-structure determination, Acta Crystallographica, A71, 3–8, (2015).
  • Sheldrick, G. M., Crystal structure refinement with SHELXL, Acta Crystallographica, C71, 3–8, (2015).
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslows i, J. and Fox, D. J., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, (2010).
  • Dennington, R., Keith, T. and Millam, J., GaussView, Version 5, Semichem Inc., Shawnee Mission, KS, (2009).
  • Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, 98, 5648, (1993).
  • Ditchfield, R., Hehre, W. J. and Pople, J. A., Self‐consistent molecular‐orbital methods. IX. An extended gaussian‐type basis for molecular‐orbital studies of organic molecules, The Journal of Chemical Physics, 54, 724–728, (1971).
  • Ioannidis, M., Gentleman, A. S., Ho, L., Lincoln, S. F. and Sumby, C. J., Complexation and structural studies of a sulfonamide aza-15-crown-5 derivative, Inorganic Chemistry Communications, 13, 59–598, (2010).
  • Alfimov, M. V., Churakov, A. V., Fedorov, Y. V., Fedorova, O. A., Gromov, S. P., Hester, R. E., Howard, J. A. K., Kuz’mina, L. G., Lednev, I. K. and Moore, J. N., Structure and ion-complexing properties of an aza-15-crown-5 ether dye: synthesis, crystallography, NMR spectroscopy, spectrophotometry and potentiometry, Journal of the Chemical Society, Perkin Transactions, 2, 2249 – 2256, (1997).
  • Ho, M. L., Hwang, F. M., Chen, P. N., Hu, Y. H., Cheng, Y. M., Chen, K. S., Lee, G. H., Chi Y. and Chou, P. T., Design and synthesis of iridium(III) azacrown complex: application as a highly sensitive metal cation phosphorescence sensor, Organic & Biomolecular Chemistry, 4, 98–103, (2006).
  • Casellato, U. and Graziani R., Crystal structure of bis(aza-15-crown-5-dithiocarbamato) platinum(II) dichloromethane (1/2), ((CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2)NCS2)2Pt•2CH2Cl2, Zeitschrift für Kristallographie - New Crystal Structures, 214, 495–496, (1999).
  • Bernstein, J., Davis, R. E., Shimoni, L. and Chang, N. L., Patterns in hydrogen bonding: functionality and graph set analysis in crystals, Angewandte Chemie International Edition in English, 34, 1555–1573, (1995).
  • Fukui, K., Role of frontier orbitals in chemical reactions, Science, 218, 747–754, (1982).
  • Gunasekaran, S., Balaji, R. A., Kumeresan, S., Anand, G. and Srinivasan, S., Canadian Journal of Analytical Sciences and Spectroscopy, 53, 149–160, (2008).
  • Çiçek, B., Çakır, Ü. And Azizoglu, A., The associations of macrocyclic ethers with cations in 1,4-dioxane/water mixtures; potentiometric Na+ and K+ binding measurements and computational study, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 72, 121–125, (2012).
  • Scrocco, E. and Tomasi, J., Electronic molecular structure, reactivity and ıntermolecular forces: an euristic ınterpretation by means of electrostatic molecular potentials, Advances in Quantum Chemistry, 103, 115–193, (1978).
  • Yıldız, C. B., Sagır, Z. O., Kılıc, T. and Azizoglu, A., Computational and experimental study on 7-epicandicandiol isolated from sideritis niveotomentosa Huber–Morathii, Studia UBB Chemia, 59 LIX (2), 17–32, (2014).
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Duygu Barut Celepci Bu kişi benim 0000-0003-1581-6208

Yayımlanma Tarihi 15 Mart 2019
Gönderilme Tarihi 3 Mayıs 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 21 Sayı: 1

Kaynak Göster

APA Barut Celepci, D. (2019). Structural characterization and DFT studies of the highly disordered compound 2-phenyl-4-[4-(1,4,7,10-tetraoxa-13-azacyclopentadecyl)benzylidene]-5-oxazolone. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 254-264. https://doi.org/10.25092/baunfbed.544635
AMA Barut Celepci D. Structural characterization and DFT studies of the highly disordered compound 2-phenyl-4-[4-(1,4,7,10-tetraoxa-13-azacyclopentadecyl)benzylidene]-5-oxazolone. BAUN Fen. Bil. Enst. Dergisi. Mart 2019;21(1):254-264. doi:10.25092/baunfbed.544635
Chicago Barut Celepci, Duygu. “Structural Characterization and DFT Studies of the Highly Disordered Compound 2-Phenyl-4-[4-(1,4,7,10-Tetraoxa-13-azacyclopentadecyl)benzylidene]-5-Oxazolone”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, sy. 1 (Mart 2019): 254-64. https://doi.org/10.25092/baunfbed.544635.
EndNote Barut Celepci D (01 Mart 2019) Structural characterization and DFT studies of the highly disordered compound 2-phenyl-4-[4-(1,4,7,10-tetraoxa-13-azacyclopentadecyl)benzylidene]-5-oxazolone. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 1 254–264.
IEEE D. Barut Celepci, “Structural characterization and DFT studies of the highly disordered compound 2-phenyl-4-[4-(1,4,7,10-tetraoxa-13-azacyclopentadecyl)benzylidene]-5-oxazolone”, BAUN Fen. Bil. Enst. Dergisi, c. 21, sy. 1, ss. 254–264, 2019, doi: 10.25092/baunfbed.544635.
ISNAD Barut Celepci, Duygu. “Structural Characterization and DFT Studies of the Highly Disordered Compound 2-Phenyl-4-[4-(1,4,7,10-Tetraoxa-13-azacyclopentadecyl)benzylidene]-5-Oxazolone”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/1 (Mart 2019), 254-264. https://doi.org/10.25092/baunfbed.544635.
JAMA Barut Celepci D. Structural characterization and DFT studies of the highly disordered compound 2-phenyl-4-[4-(1,4,7,10-tetraoxa-13-azacyclopentadecyl)benzylidene]-5-oxazolone. BAUN Fen. Bil. Enst. Dergisi. 2019;21:254–264.
MLA Barut Celepci, Duygu. “Structural Characterization and DFT Studies of the Highly Disordered Compound 2-Phenyl-4-[4-(1,4,7,10-Tetraoxa-13-azacyclopentadecyl)benzylidene]-5-Oxazolone”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 21, sy. 1, 2019, ss. 254-6, doi:10.25092/baunfbed.544635.
Vancouver Barut Celepci D. Structural characterization and DFT studies of the highly disordered compound 2-phenyl-4-[4-(1,4,7,10-tetraoxa-13-azacyclopentadecyl)benzylidene]-5-oxazolone. BAUN Fen. Bil. Enst. Dergisi. 2019;21(1):254-6.