Research Article
BibTex RIS Cite

Identity graphs of finite cyclic groups

Year 2020, Volume: 22 Issue: 1, 149 - 158, 10.01.2020
https://doi.org/10.25092/baunfbed.679578

Abstract

In this paper, identity graphs of finite cyclic groups are considered. The identity graphs of finite cyclic groups are examined regarding to the subset of self-inverse elements and the subset of mutual inverse elements in a group. By using the features of these subsets the number of triangles and the number of edges in the identity graphs of finite cyclic groups are determined. Furthermore, Schultz, Gutman, first Zagreb, second Zagreb and Wiener indices are computed for identity graphs.

References

  • Anderson, D.F. and Livingston, P.S., The zero-divisor graph of a commutative ring, Journal of Algebra, 217: 434-447, (1999).
  • Anderson, D.F. and Badawi, A., The total graph of a commutative ring, Journal of Algebra, 320, 2706–2719, (2008).
  • Chalapathi, T. and Kumar, R.V.M.S.S., Invertible graphs of finite groups, Computer Science Journal of Moldova, 26(2), 126-145, (2018).
  • Dobrynin, A.A. and Kochetova, A.A., Degree Distance of a Graph: A degree analogue of the Wiener index, Journal of Chemical Information and Computer Sciences, 34, 1082-1086, (1994).
  • Gutman, I., and Trinajstic, N., Graph theory and molecular orbitals, Total φ-electron energy of alternant hydrocarbons, Chemical Physics Letters, 17, 535-538, (1972).
  • Gutman, I., Selected properties of the Schultz molecular topological index, Journal of Chemical Information and Computer Sciences, 34, 1087-1089, (1994).
  • Kandasamy, W.B.V. and Smarandache, F., Groups as Graphs, Editura CuArt 2009, http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm
  • Wiener, H., Structural determination of paraffin boiling points, Journal of the American Chemical Society, 69, 17-20, (1947).

Sonlu devirli grupların birim grafları

Year 2020, Volume: 22 Issue: 1, 149 - 158, 10.01.2020
https://doi.org/10.25092/baunfbed.679578

Abstract

Bu çalışmada sonlu devirli grupların birim grafları göz önüne alınmıştır. Sonlu devirli grupların birim grafları grupta tersi kendisi olan elemanların alt kümesi ve tersi kendisinden farklı elemanların alt kümesi ile ilişkili olarak incelenmiştir. Bu alt kümelerin özellikleri kullanılarak sonlu devirli grupların birim graflarındaki üçgen sayısı ve kenar sayısı belirlenmiştir. Ayrıca birim grafların Schultz, Gutman, birinci Zagreb, ikinci Zagreb ve Wiener indeksleri hesaplanmıştır.

References

  • Anderson, D.F. and Livingston, P.S., The zero-divisor graph of a commutative ring, Journal of Algebra, 217: 434-447, (1999).
  • Anderson, D.F. and Badawi, A., The total graph of a commutative ring, Journal of Algebra, 320, 2706–2719, (2008).
  • Chalapathi, T. and Kumar, R.V.M.S.S., Invertible graphs of finite groups, Computer Science Journal of Moldova, 26(2), 126-145, (2018).
  • Dobrynin, A.A. and Kochetova, A.A., Degree Distance of a Graph: A degree analogue of the Wiener index, Journal of Chemical Information and Computer Sciences, 34, 1082-1086, (1994).
  • Gutman, I., and Trinajstic, N., Graph theory and molecular orbitals, Total φ-electron energy of alternant hydrocarbons, Chemical Physics Letters, 17, 535-538, (1972).
  • Gutman, I., Selected properties of the Schultz molecular topological index, Journal of Chemical Information and Computer Sciences, 34, 1087-1089, (1994).
  • Kandasamy, W.B.V. and Smarandache, F., Groups as Graphs, Editura CuArt 2009, http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm
  • Wiener, H., Structural determination of paraffin boiling points, Journal of the American Chemical Society, 69, 17-20, (1947).
There are 8 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Nazmiye Feyza Yalçın This is me 0000-0001-5705-8658

Yakup Kırğıl This is me 0000-0002-2300-0498

Publication Date January 10, 2020
Submission Date March 27, 2019
Published in Issue Year 2020 Volume: 22 Issue: 1

Cite

APA Yalçın, N. F., & Kırğıl, Y. (2020). Identity graphs of finite cyclic groups. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 149-158. https://doi.org/10.25092/baunfbed.679578
AMA Yalçın NF, Kırğıl Y. Identity graphs of finite cyclic groups. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. January 2020;22(1):149-158. doi:10.25092/baunfbed.679578
Chicago Yalçın, Nazmiye Feyza, and Yakup Kırğıl. “Identity Graphs of Finite Cyclic Groups”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 1 (January 2020): 149-58. https://doi.org/10.25092/baunfbed.679578.
EndNote Yalçın NF, Kırğıl Y (January 1, 2020) Identity graphs of finite cyclic groups. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 1 149–158.
IEEE N. F. Yalçın and Y. Kırğıl, “Identity graphs of finite cyclic groups”, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 1, pp. 149–158, 2020, doi: 10.25092/baunfbed.679578.
ISNAD Yalçın, Nazmiye Feyza - Kırğıl, Yakup. “Identity Graphs of Finite Cyclic Groups”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/1 (January2020), 149-158. https://doi.org/10.25092/baunfbed.679578.
JAMA Yalçın NF, Kırğıl Y. Identity graphs of finite cyclic groups. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2020;22:149–158.
MLA Yalçın, Nazmiye Feyza and Yakup Kırğıl. “Identity Graphs of Finite Cyclic Groups”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 1, 2020, pp. 149-58, doi:10.25092/baunfbed.679578.
Vancouver Yalçın NF, Kırğıl Y. Identity graphs of finite cyclic groups. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2020;22(1):149-58.