Araştırma Makalesi
BibTex RIS Kaynak Göster

Betonarme kolonların eşdeğer akma eğriliği için önerilen pratik bağıntıların irdelenmesi

Yıl 2020, Cilt: 22 Sayı: 1, 354 - 366, 10.01.2020
https://doi.org/10.25092/baunfbed.680831

Öz

Bu çalışmada, yapı sistemlerinin şekildeğiştirme esaslı tasarımı ve değerlendirilmesi çerçevesinde, eşdeğer akma eğrilikleri için literatürde önerilen pratik yaklaşımların geçerliliği kare enkesitli betonarme kolonlar üzerinde teorik olarak incelenmiştir. Çalışma kapsamında, donatı akma dayanımı sabit tutularak enkesit boyutu, normal kuvvet düzeyi, boyuna donatı oranı ve beton basınç dayanımının parametrik olarak değiştirildiği 1500’ün üzerindeki hesap modeli için moment – eğrilik analizleri gerçekleştirilmiştir. Bu analiz sonuçları referans alınarak, ilgili bağıntıların hangi oranda doğru sonuç verdiği geniş bir çerçevede değerlendirilmiştir. İncelenen kolon enkesitlerine ait eşdeğer akma eğriliklerinin belirlenmesinde normal kuvvetin düzeyine bağlı olarak, P/Agfc' < 0.3 için donatı çeliğinin akması, P/Agfc' = 0.3 için donatı çeliğinin akması ve/veya betonun ezilmesi, P/Agfc' > 0.3 için ise betonun ezilmesi hakim olmuştur. Pratik bağıntılardan elde edilen akma eğrilikleri için boyuna donatı oranı ve beton basınç dayanımının bağımsız etkileri sınırlı iken, normal kuvvet düzeyi ile birlikte olan birleşik etkileri bu parametreleri önemli hale getirmiştir.

Kaynakça

  • prEN 1998-1, Eurocode–8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings. European Committee for Standardization, Brussels, (2003).
  • AASHTO, Recommended LRFD guidelines for the seismic design of highway bridges, American Association of State Highway and Transportation Officials, NCHRP 20–07 Task 193, Washington DC, (2006).
  • FEMA 356, Prestandard and commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency, Washington, DC, (2000).
  • ACI-318, Building code and requirements for structural concrete, American Concrete Institute, Farmington Hills, Michigan, (2011).
  • Türkiye Bina Deprem Yönetmeliği, Deprem etkisi altında binaların tasarımı için esaslar, Afet ve Acil Durum Yönetimi Başkanlığı, Ankara, (2018).
  • Biskinis, D. ve Fardis, M.N., Deformations of concrete members at yielding and ultimate under monotonic or cyclic loading (Including repaired and retrofitted members), University of Patras - Department of Civil Engineering, Report No: SEE 2009-01, Patras, (2009).
  • Priestley, M.J.N., Performance-based seismic design, Proceedings of 12th World Conference on Earthquake Engineering, Paper No: 2831, Auckland, (2000).
  • Priestley, M.J.N., Myths and Fallacies in Earthquake Engineering, Revisited the Ninth Mallet Milne Lecture, IUSS Press, Pavia, (2003).
  • Priestley, M.J.N., The Need for Displacement-Based Design and Analysis, (In: Pecker, A. (eds) Advanced Earthquake Engineering Analysis), CISM International Centre for Mechanical Sciences, 494, 121 – 132, (2007).
  • Priestley, M.J.N., Calvi, G.M. ve Kowalsky, M.J., Displacement-based seismic design of concrete structures, 6th National Conference on Earthquake Engineering, İstanbul, (2007).
  • Priestley, M.J.N., Calvi, G.M. ve Kowalsky, M.J., Displacement-Based Seismic Design of Structures, IUSS Press, Pavia, (2007).
  • Priestley, M.J.N. ve Kowalsky, M.J., Aspects of drift and ductility capacity of rectangular cantilever structural walls, Bulletin of NZSEE, 31, 6, 73 – 85, (1998).
  • Priestley, M.J.N., Brief comments on elastic flexibility of reinforced concrete frames and significance to seismic design, Bulletin of NZSEE, 31, 4, 246 – 259, (1998).
  • Montes, E.H. ve Aschleim, M., Estimates of yield curvature for the design of reinforced concrete columns, Magazine of Concrete Research, 55, 4, 373 – 383, (2003).
  • Tjhin, T.N., Aschleim, M.A. ve Wallace, J.W., Yield displacement estimates for displacement-based seismic design of ductile reinforced concrete structural wall buildings, 13th World Conference on Earthquake Engineering, Paper No: 1035, Vancouver, (2004).
  • Mander, J.B., Priestley, M.J.N. ve Park, R., Theoretical stress-strain model for confined concrete, Journal of Structural Engineering, 114, 8, 1804 – 1826, (1988).
  • Mander, J.B., Priestley, M.J.N. ve Park, R., Observed stress-strain model of confined concrete, Journal of Structural Engineering, 114, 8, 1827 – 1849, (1988).
  • King, D.J., Priestley, M.J.N. ve Park, P., Computer programs for concrete column design, University of Canterbury - Department of Civil Engineering, Research Report: 86/12, Christchurch, (1986).
  • Montejo, L.A. ve Kowalsky, M.J., CUMBIA - Set of codes for the analysis of reinforced concrete members, North Carolina State University - Constructed Facilities Laboratory, Technical Report: IS-07-01, Raleigh, NC, (2007).

Investigation of practical equations for equivalent yield curvature of reinforcement concrete columns

Yıl 2020, Cilt: 22 Sayı: 1, 354 - 366, 10.01.2020
https://doi.org/10.25092/baunfbed.680831

Öz

In this study, the usability of practical approaches proposed for equivalent yield curvature on reinforcement concrete columns with the square cross-section was numerically investigated in the framework of deformation based design and assessment of structural systems. In this context, the moment – curvature analyses on the column models more than 1500, in which the axial load level, cross-section dimension, longitudinal reinforcement ratio and concrete compression strength were modified parametrically, were conducted for the constant yield strength. Based on the analysis results, in what proportion the related equations give results was discussed comprehensively. Depending on the axial load levels of P/Agfc' < 0.3, P/Agfc' = 0.3 and P/Agfc' > 0.3 for the considered columns, the yielding of reinforcement, yielding of reinforcement and/or concrete crushing, concrete crushing governed the formation of yield curvatures, respectively. It can be deduced that while the independent effects with regard to the longitudinal reinforcement ratio and concrete compressive strength for the equivalent yield curvatures calculated by the practical approaches remained in minimal levels, the combined effects of them with the axial load level make these parameters become important these parameters.

Kaynakça

  • prEN 1998-1, Eurocode–8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings. European Committee for Standardization, Brussels, (2003).
  • AASHTO, Recommended LRFD guidelines for the seismic design of highway bridges, American Association of State Highway and Transportation Officials, NCHRP 20–07 Task 193, Washington DC, (2006).
  • FEMA 356, Prestandard and commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency, Washington, DC, (2000).
  • ACI-318, Building code and requirements for structural concrete, American Concrete Institute, Farmington Hills, Michigan, (2011).
  • Türkiye Bina Deprem Yönetmeliği, Deprem etkisi altında binaların tasarımı için esaslar, Afet ve Acil Durum Yönetimi Başkanlığı, Ankara, (2018).
  • Biskinis, D. ve Fardis, M.N., Deformations of concrete members at yielding and ultimate under monotonic or cyclic loading (Including repaired and retrofitted members), University of Patras - Department of Civil Engineering, Report No: SEE 2009-01, Patras, (2009).
  • Priestley, M.J.N., Performance-based seismic design, Proceedings of 12th World Conference on Earthquake Engineering, Paper No: 2831, Auckland, (2000).
  • Priestley, M.J.N., Myths and Fallacies in Earthquake Engineering, Revisited the Ninth Mallet Milne Lecture, IUSS Press, Pavia, (2003).
  • Priestley, M.J.N., The Need for Displacement-Based Design and Analysis, (In: Pecker, A. (eds) Advanced Earthquake Engineering Analysis), CISM International Centre for Mechanical Sciences, 494, 121 – 132, (2007).
  • Priestley, M.J.N., Calvi, G.M. ve Kowalsky, M.J., Displacement-based seismic design of concrete structures, 6th National Conference on Earthquake Engineering, İstanbul, (2007).
  • Priestley, M.J.N., Calvi, G.M. ve Kowalsky, M.J., Displacement-Based Seismic Design of Structures, IUSS Press, Pavia, (2007).
  • Priestley, M.J.N. ve Kowalsky, M.J., Aspects of drift and ductility capacity of rectangular cantilever structural walls, Bulletin of NZSEE, 31, 6, 73 – 85, (1998).
  • Priestley, M.J.N., Brief comments on elastic flexibility of reinforced concrete frames and significance to seismic design, Bulletin of NZSEE, 31, 4, 246 – 259, (1998).
  • Montes, E.H. ve Aschleim, M., Estimates of yield curvature for the design of reinforced concrete columns, Magazine of Concrete Research, 55, 4, 373 – 383, (2003).
  • Tjhin, T.N., Aschleim, M.A. ve Wallace, J.W., Yield displacement estimates for displacement-based seismic design of ductile reinforced concrete structural wall buildings, 13th World Conference on Earthquake Engineering, Paper No: 1035, Vancouver, (2004).
  • Mander, J.B., Priestley, M.J.N. ve Park, R., Theoretical stress-strain model for confined concrete, Journal of Structural Engineering, 114, 8, 1804 – 1826, (1988).
  • Mander, J.B., Priestley, M.J.N. ve Park, R., Observed stress-strain model of confined concrete, Journal of Structural Engineering, 114, 8, 1827 – 1849, (1988).
  • King, D.J., Priestley, M.J.N. ve Park, P., Computer programs for concrete column design, University of Canterbury - Department of Civil Engineering, Research Report: 86/12, Christchurch, (1986).
  • Montejo, L.A. ve Kowalsky, M.J., CUMBIA - Set of codes for the analysis of reinforced concrete members, North Carolina State University - Constructed Facilities Laboratory, Technical Report: IS-07-01, Raleigh, NC, (2007).
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Umut Hasgül 0000-0002-9358-3369

Yayımlanma Tarihi 10 Ocak 2020
Gönderilme Tarihi 21 Kasım 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 22 Sayı: 1

Kaynak Göster

APA Hasgül, U. (2020). Betonarme kolonların eşdeğer akma eğriliği için önerilen pratik bağıntıların irdelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 354-366. https://doi.org/10.25092/baunfbed.680831
AMA Hasgül U. Betonarme kolonların eşdeğer akma eğriliği için önerilen pratik bağıntıların irdelenmesi. BAUN Fen. Bil. Enst. Dergisi. Ocak 2020;22(1):354-366. doi:10.25092/baunfbed.680831
Chicago Hasgül, Umut. “Betonarme kolonların eşdeğer Akma eğriliği için önerilen Pratik bağıntıların Irdelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, sy. 1 (Ocak 2020): 354-66. https://doi.org/10.25092/baunfbed.680831.
EndNote Hasgül U (01 Ocak 2020) Betonarme kolonların eşdeğer akma eğriliği için önerilen pratik bağıntıların irdelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 1 354–366.
IEEE U. Hasgül, “Betonarme kolonların eşdeğer akma eğriliği için önerilen pratik bağıntıların irdelenmesi”, BAUN Fen. Bil. Enst. Dergisi, c. 22, sy. 1, ss. 354–366, 2020, doi: 10.25092/baunfbed.680831.
ISNAD Hasgül, Umut. “Betonarme kolonların eşdeğer Akma eğriliği için önerilen Pratik bağıntıların Irdelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/1 (Ocak 2020), 354-366. https://doi.org/10.25092/baunfbed.680831.
JAMA Hasgül U. Betonarme kolonların eşdeğer akma eğriliği için önerilen pratik bağıntıların irdelenmesi. BAUN Fen. Bil. Enst. Dergisi. 2020;22:354–366.
MLA Hasgül, Umut. “Betonarme kolonların eşdeğer Akma eğriliği için önerilen Pratik bağıntıların Irdelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 22, sy. 1, 2020, ss. 354-66, doi:10.25092/baunfbed.680831.
Vancouver Hasgül U. Betonarme kolonların eşdeğer akma eğriliği için önerilen pratik bağıntıların irdelenmesi. BAUN Fen. Bil. Enst. Dergisi. 2020;22(1):354-66.