Araştırma Makalesi
BibTex RIS Kaynak Göster

Üçüncü mertebeden gecikmeli bir diferansiyel denklem için çözümlerin sürdürülebilirliği ve sınırlılığı

Yıl 2021, Cilt: 23 Sayı: 1, 334 - 344, 29.01.2021
https://doi.org/10.25092/baunfbed.854814

Öz

Bu çalışmada Lyapunov’un ikinci metodu kullanılarak üçüncü mertebeden gecikmeli bir diferansiyel denklemin çözümlerinin sınırlılığı ve sürdürebilirliği ile ilgili yeni sonuçlar elde edilmiştir. Bu çalışma literatürde üçüncü mertebeden gecikmeli ve gecikmesiz diferansiyel denklemler üzerine iyi bilinen bazı sonuçları kapsamış ve daha ileri götürmüştür. Ayrıca çalışmada elde ettiğimiz sonuçların daha iyi anlaşılması için bir örnek verilmiştir.

Kaynakça

  • Liapunov, A. M., Stability of Motion.With a Contribution by V.A. Pliss and an introduction by V.P. Basov, Mathematics in Science and Engineering, vol. 30. Academic Press, New York-London. Translated from the Russian by Flavian Abramovici and Michael Shimshoni, ( 1966).
  • Ahmad, S. and Rama Mohana Rao, M., Theory of ordinary differential equations with applications in biology and engineering affiliated. East-West Press Pvt. Ltd., New Delhi, (1999).
  • Burton, T. A., Stability and periodic solutions of ordinary and functional differential equations, Mathematics in Science and Engineering, Academic Press, Orlando, Fla, USA, (1985).
  • Driver, R. D., Ordinary and delay differential equations. Springer, NewYork, NY, USA, (1976).
  • Hale, J. K., Theory of functional diflerential equations. Springer-Verlag, New York, (1977).
  • Krasovskii, N. N., Stability of motion. Applications of Lyapunov's second method to differential systems and equations with delay, Translated by J. L. Brenner Stanford University Press, Stanford, California, (1963).
  • Reissig, R., Sansone, G. and Conti, R., Non-linear differential equations of higher order, Noordhoff International Publishing, (1974).
  • Yoshizawa, T., 1966. Stability Theory by Lyapunov's Second Method, Mathematical Society of Japan, No. 9, Tokyo.
  • Abou-El-Ela, A. M. A., Sadek, A. I. and Mahmoud, A. M., Stability and boundedness of solutions of certain third order non linear delay differential equation, ICGST-ACSE Journal, 9,1, 9-15, (2009).
  • Ademola, A. T., Ogundare, B. S., Ogundiran, M. O. and Adesina, O. A., Stability, boundedness, and existence of periodic solutions to certain third-order delay differential equations with multiple deviating Arguments, International Journal of Differential Equations, Art. ID 213935, 12 pp, (2015).
  • Ademola, A. T., Existence and uniqueness of a periodic solution to certain third order nonlinear delay differential equation with multiple deviating arguments, Acta Universitatis Sapientiae,Mathematica, 5, 2, 113-131,(2013).
  • Ayhan, T., (2017). A note on the continuability and boundedness of solutions to a class of vector differential equations of third order with finite delay, Quaestiones Mathematicae, 40, 8, 1095-1109, (2017).
  • Ayhan, T. and Sofuoglu, Y., Global existence and boundedness of a certain nonlinear vector integro-differential equation of second order with multiple deviating arguments, Mathematıcal Communıcatıons, 22, 165-176, (2017).
  • Remili, M. and Oudjedi, L. D., Stability and boundedness of the solutions of nonautonomous third order differential equations with delay, Acta Univ. Palack.Olomuc. Fac. Rerum.Natur. Math., 53, 2, 139-147, (2014).
  • Remili, M. and Oudjedi, L. D., Uniform ultimate boundedness and asymptotic behaviour of third order nonlinear delay differential equation, Afrika Matematika, 27, 7, 1227–1237, (2016).
  • Remili, M. and Beldjerd, D., A boundedness and stability results for a kind of third order delay differential equations, Applications & Applied Mathematics, 10, 2, 772-782, (2015).
  • Tunç, C. and Ayhan, T., Continuability and boundedness of solutions for a kind of nonlinear delay integro differential equations of the third order, Journal of Mathematical Sciences, 236, 3, 354-366, (2019).
  • Tunç, C. and Ayhan, T., Global existence and boundedness of solutions of a certain nonlinear integro-differential equation of second order with multiple deviating arguments, Journal of Inequalities and Applications, 46, (2016).
  • Tunç, C. and Ayhan, T., On the global existence and boundedness of solutions to a nonlinear integro-differential equations of second order, Journal of Interpolation and Approximation in Scientific Computing, 2, 84-97, (2015).
  • Tunç, C. and Ayhan, T., New boundedness results for a kind of nonlinear differential equations of third order, Journal of Computational Analysis and Applications, 13, 3, 477-484, (2011).
  • Tunç, C., New results about stability and boundedness of solutions of certain non-linear third order delay differential equations. The Arabian Journal for Science and Engineering, 31, 2A, 185-196, (2006).
  • Hsu, S. B., Ordinary differential equations with applications, World Scientific Publishing Co. Pte. Ltd., 244, (2006).

Continuability and boundedness of solutions to a differential equation of third order with multiple deviating arguments

Yıl 2021, Cilt: 23 Sayı: 1, 334 - 344, 29.01.2021
https://doi.org/10.25092/baunfbed.854814

Öz

In this study, Lyapunov's second method is used to obtain criteria for continuability and boundedness of solutions to a kind of third order differential equations with multiple deviating arguments. The result obtained in this work includes and extends some well known results on third order differential equations with and without delay in the literature. We also give an example for better understanding our result.

Kaynakça

  • Liapunov, A. M., Stability of Motion.With a Contribution by V.A. Pliss and an introduction by V.P. Basov, Mathematics in Science and Engineering, vol. 30. Academic Press, New York-London. Translated from the Russian by Flavian Abramovici and Michael Shimshoni, ( 1966).
  • Ahmad, S. and Rama Mohana Rao, M., Theory of ordinary differential equations with applications in biology and engineering affiliated. East-West Press Pvt. Ltd., New Delhi, (1999).
  • Burton, T. A., Stability and periodic solutions of ordinary and functional differential equations, Mathematics in Science and Engineering, Academic Press, Orlando, Fla, USA, (1985).
  • Driver, R. D., Ordinary and delay differential equations. Springer, NewYork, NY, USA, (1976).
  • Hale, J. K., Theory of functional diflerential equations. Springer-Verlag, New York, (1977).
  • Krasovskii, N. N., Stability of motion. Applications of Lyapunov's second method to differential systems and equations with delay, Translated by J. L. Brenner Stanford University Press, Stanford, California, (1963).
  • Reissig, R., Sansone, G. and Conti, R., Non-linear differential equations of higher order, Noordhoff International Publishing, (1974).
  • Yoshizawa, T., 1966. Stability Theory by Lyapunov's Second Method, Mathematical Society of Japan, No. 9, Tokyo.
  • Abou-El-Ela, A. M. A., Sadek, A. I. and Mahmoud, A. M., Stability and boundedness of solutions of certain third order non linear delay differential equation, ICGST-ACSE Journal, 9,1, 9-15, (2009).
  • Ademola, A. T., Ogundare, B. S., Ogundiran, M. O. and Adesina, O. A., Stability, boundedness, and existence of periodic solutions to certain third-order delay differential equations with multiple deviating Arguments, International Journal of Differential Equations, Art. ID 213935, 12 pp, (2015).
  • Ademola, A. T., Existence and uniqueness of a periodic solution to certain third order nonlinear delay differential equation with multiple deviating arguments, Acta Universitatis Sapientiae,Mathematica, 5, 2, 113-131,(2013).
  • Ayhan, T., (2017). A note on the continuability and boundedness of solutions to a class of vector differential equations of third order with finite delay, Quaestiones Mathematicae, 40, 8, 1095-1109, (2017).
  • Ayhan, T. and Sofuoglu, Y., Global existence and boundedness of a certain nonlinear vector integro-differential equation of second order with multiple deviating arguments, Mathematıcal Communıcatıons, 22, 165-176, (2017).
  • Remili, M. and Oudjedi, L. D., Stability and boundedness of the solutions of nonautonomous third order differential equations with delay, Acta Univ. Palack.Olomuc. Fac. Rerum.Natur. Math., 53, 2, 139-147, (2014).
  • Remili, M. and Oudjedi, L. D., Uniform ultimate boundedness and asymptotic behaviour of third order nonlinear delay differential equation, Afrika Matematika, 27, 7, 1227–1237, (2016).
  • Remili, M. and Beldjerd, D., A boundedness and stability results for a kind of third order delay differential equations, Applications & Applied Mathematics, 10, 2, 772-782, (2015).
  • Tunç, C. and Ayhan, T., Continuability and boundedness of solutions for a kind of nonlinear delay integro differential equations of the third order, Journal of Mathematical Sciences, 236, 3, 354-366, (2019).
  • Tunç, C. and Ayhan, T., Global existence and boundedness of solutions of a certain nonlinear integro-differential equation of second order with multiple deviating arguments, Journal of Inequalities and Applications, 46, (2016).
  • Tunç, C. and Ayhan, T., On the global existence and boundedness of solutions to a nonlinear integro-differential equations of second order, Journal of Interpolation and Approximation in Scientific Computing, 2, 84-97, (2015).
  • Tunç, C. and Ayhan, T., New boundedness results for a kind of nonlinear differential equations of third order, Journal of Computational Analysis and Applications, 13, 3, 477-484, (2011).
  • Tunç, C., New results about stability and boundedness of solutions of certain non-linear third order delay differential equations. The Arabian Journal for Science and Engineering, 31, 2A, 185-196, (2006).
  • Hsu, S. B., Ordinary differential equations with applications, World Scientific Publishing Co. Pte. Ltd., 244, (2006).
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Timur Ayhan Bu kişi benim 0000-0002-3105-7806

Yayımlanma Tarihi 29 Ocak 2021
Gönderilme Tarihi 14 Mayıs 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 23 Sayı: 1

Kaynak Göster

APA Ayhan, T. (2021). Üçüncü mertebeden gecikmeli bir diferansiyel denklem için çözümlerin sürdürülebilirliği ve sınırlılığı. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(1), 334-344. https://doi.org/10.25092/baunfbed.854814
AMA Ayhan T. Üçüncü mertebeden gecikmeli bir diferansiyel denklem için çözümlerin sürdürülebilirliği ve sınırlılığı. BAUN Fen. Bil. Enst. Dergisi. Ocak 2021;23(1):334-344. doi:10.25092/baunfbed.854814
Chicago Ayhan, Timur. “Üçüncü Mertebeden Gecikmeli Bir Diferansiyel Denklem için çözümlerin sürdürülebilirliği Ve sınırlılığı”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, sy. 1 (Ocak 2021): 334-44. https://doi.org/10.25092/baunfbed.854814.
EndNote Ayhan T (01 Ocak 2021) Üçüncü mertebeden gecikmeli bir diferansiyel denklem için çözümlerin sürdürülebilirliği ve sınırlılığı. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 1 334–344.
IEEE T. Ayhan, “Üçüncü mertebeden gecikmeli bir diferansiyel denklem için çözümlerin sürdürülebilirliği ve sınırlılığı”, BAUN Fen. Bil. Enst. Dergisi, c. 23, sy. 1, ss. 334–344, 2021, doi: 10.25092/baunfbed.854814.
ISNAD Ayhan, Timur. “Üçüncü Mertebeden Gecikmeli Bir Diferansiyel Denklem için çözümlerin sürdürülebilirliği Ve sınırlılığı”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/1 (Ocak 2021), 334-344. https://doi.org/10.25092/baunfbed.854814.
JAMA Ayhan T. Üçüncü mertebeden gecikmeli bir diferansiyel denklem için çözümlerin sürdürülebilirliği ve sınırlılığı. BAUN Fen. Bil. Enst. Dergisi. 2021;23:334–344.
MLA Ayhan, Timur. “Üçüncü Mertebeden Gecikmeli Bir Diferansiyel Denklem için çözümlerin sürdürülebilirliği Ve sınırlılığı”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 23, sy. 1, 2021, ss. 334-4, doi:10.25092/baunfbed.854814.
Vancouver Ayhan T. Üçüncü mertebeden gecikmeli bir diferansiyel denklem için çözümlerin sürdürülebilirliği ve sınırlılığı. BAUN Fen. Bil. Enst. Dergisi. 2021;23(1):334-4.