Research Article
BibTex RIS Cite

Kaolinit kilinin hidrojen depolama amaçlı kullanımı için modifikasyonu ve karakterizasyonu

Year 2023, Volume: 25 Issue: 1, 186 - 202, 16.01.2023
https://doi.org/10.25092/baunfbed.1104156

Abstract

Dünyada var olan enerji kaynaklarının son yıllarda azalmasına bağlı olarak, güvenli ve sürdürülebilir enerji alanlarında alternatif olabileceği düşüncesiyle yenilenebilir enerji kaynaklarının kullanılmasına yönelik bilimsel çalışmalar hızla devam etmektedir. Hidrojen, güç üretimi, ısı, ulaşım ve enerji depolama sistemleri gibi farklı alanlarda kullanım potansiyeline sahip küresel olarak çevre üzerinde herhangi bir etkisi olmayan temiz yenilenebilir bir enerji kaynağıdır. Kaolinit, 1:1 tabakalı yapıya sahip ve katmanlar arası mesafesi düşük bir kil mineralidir. Kil minerallerinin adsorpsiyon kapasitelerinin ilgi çekici olması sebebiyle kaolinit birçok depolama uygulamaları için kullanılabilir. Yapılan çalışmalar, kil minerallerinin hidrojen depolama materyali olarak kullanılabileceği göstermektedir ancak katmanlar arası mesafesi diğer killere oranla daha az bir kil minerali olması sebebiyle hidrojen moleküllerinin kaolinit tabakaları arasında tutulması zordur. Bu nedenle, kaolinitin hidrojen depolama kapasitesinin arttırılmasına yönelik ön işlemler dikkat çekmektedir. Bu çalışmada, kaolinit üzerinde hidrojen moleküllerinin adsorpsiyonunun arttırılması amacıyla 1:1 kil tabakasına sahip kaolinit (K) öncelikle dimetil sülfoksit (DMSO) organik bileşeği ile aralanarak interkale kaolinit (KD), sonrasında ise organik bir modifiyer madde olan 2,6-diaminopiridin (2,6-DAP) molekülleri ile DMSO moleküllerinin yer değiştirmesi sağlanarak modifiye kaolinit (KD_2,6-DAP) organokili oluşturulmuştur. Elde edilen örneklerin temel olarak karakterizasyonunda BET yüzey alanı tayin cihazı ile yüzey alanları ve gözenek boyutu dağılımları; SEM cihazı ile morfolojisi; FTIR ve XRD cihazları ile yapısal karakterizasyonu; TGA cihazı ile termal kararlılığı belirlenmiştir. Aralanarak modifiye edilen kaolinitin hidrojen depolama kapasitesi, kriyojenik sıcaklıkta ve 0-7 bar basınç aralığında kaolinitten daha yüksek olarak ölçülmüştür. 7 bar basınçta kaolinitin ağırlıkça hidrojen depolama kapasitesi %0,002, modifiye kaolinitin ise %0,018 olarak belirlenmiştir. Gerçekleştirilen tüm bu karakterizasyon işlemleri ışığında killerin modifikasyon ile hidrojen depolama kapasitelerinin arttırılabileceği ve enerji alanında hidrojen depolama materyali olarak kullanılabileceği sonucuna varılmıştır.

References

  • Fayaz H., Saidur R., Razali N., Anuar F.S., Saleman A.R. ve Islam M.R., An overview of hydrogen as a vehicle fuel, Renewable and Sustainable Energy Reviews, 16, 5511-5528, 2012.
  • Roszak R., Firlej L., Roszak S., Pfeifer P. ve Kuchta B., Hydrogen storage by adsorption in porous materials: Is it possible?, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 496, 69-76, 2016.
  • Zhao, J., Gao, W., Tao, Z.G., Guo, H.Y. ve He, M.C., Density functional theory investigation of different coverage hydrogen adsorption on the kaolinite (001) surface, Clay Minerals, 1-27, 2018.
  • Sawai, N. ve Harun, F., Hydrogen Adsorption on Agricultural-Based Activated Carbons, Zeolite Templated-Carbons and Clay-Based Materials; A Review, Journal of Industrial Engineering Research, 1, 5,1-7, 2015.
  • Zhang W.B., Zhang S.L., Zhang Z.J., Wang L.L. ve Yang W., The hydrogen adsorption on Zr-decorated LiB (001): A DFT study, Vacuum, 110, 62-68, 2014.
  • Ren J.W., Musyoka N.M., Langmi H.W., Mathe M. ve Liao S.J., Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review, International Journal of Hydrogen Energy, 42, 289-311, 2017.
  • Mondelli, C., Bardelli, F., Vitillo, J.G., Didier, M., Brendle, J., Cavicchia, D.R., Robinet J.C. ve Charlet L., Hydrogen adsorption and diffusion in synthetic Na-montmorillonites at high pressures and temperature, International Journal of Hydrogen Energy, 40, 2698-2709, 2015.
  • Alver, B.E., Adsorption studies of hydrogen and ethylene on cation-exchanged bentonite, Clay Minerals, 52, 1, 67-73, 2017.
  • Almasoudi, A. ve Mokaya, R., Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework, Journal of Materials Chemistry, 2, 1, 2012.
  • Cai, J., Li, L., Lv, X., Yang, C. ve Zhao, X., Large surface area ordered porous carbons via nanocasting zeolite 10x and high performance for hydrogen storage application, ACS Applied Materials and Interfaces, 6, 1, 167-175, 2014.
  • Niaz, S., Manzoor, T. ve Pandith A.H., Hydrogen storage: Materials, methods and perspectives, Renewable and Sustainable Energy Reviews, 50, 457-469, 2015.
  • Bicil, Z. ve Doğan, M., Characterization of Activated Carbons Prepared from Almond Shells and Their Hydrogen Storage Properties, Energy&Fuels, 35, 12, 10227-10240, 2021.
  • Doğan, M., Selek, A., Turhan, O., Kızılduman, B. K. ve Bicil, Z., Different functional groups functionalized hexagonal boron nitride (h-BN) nanoparticles and multi-walled carbon nanotubes (MWCNT) for hydrogen storage, Fuel, 303, 121335, 2021.
  • Kızılduman, B.K., Turhan, Y. ve Doğan, M., Mesoporous carbon spheres produced by hydrothermal carbonization from rice husk: Optimization, characterization and hydrogen storage, Advanced Powder Technology, 2, 11, 4222-4234, 2021.
  • Sun Q.Q., Yang T.L., Yang L., Fan K., Peng S.M., Long X.G., Zhou X.S., Zu X.T. ve Du J.C., First-principles study on the adsorption and dissociation of H2 molecules on Be (0001) surfaces, Computational Condensed Matter, 117, 251-258, 2016.
  • Bachurin D.V. ve Viadimirov P.V., Ab initio study of beryllium surfaces with different hydrogen coverages, Acta Materialia, 134, 81–92, 2017.
  • Mahdi R.S. ve Sahar Y., Theoretical study of adsorption of H2 gas on pristine and AsGa-doped (4, 4) armchair models of BPNTs, Computational Condensed Matter, 3, 21-29, 2015.
  • Sigot L., Ducom G. ve Germain P., Adsorption of hydrogen sulfide (H2S) on zeolite (Z): 404 Retention Mechanism, Chemical Engineering Journal, 287, 47-53, 2016.
  • Gu C., Gao G.H. ve Yu Y.X., Density functional study of the adsorption of hydrogen in 343 carbon nano-tube, Journal of the Chinese Rare Earth Society, 22, 97-100, 2004.
  • Ruiz-García, C., Pérez-Carvajal, J., Berenguer-Murcia, A., Darder, M., Aranda, P., Cazorla-Amorós, D. Ve Ruiz-Hitzky, E., Clay-supported graphene materials: application to hydrogen storage, Physical Chemistry Chemical Physics, 15, 42, 18635, 2013.
  • Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V. A. ve Stanjek, H., Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006, Clays and Clay Minerals, 54, 6, 761-772, 2006.
  • Neder, R.B., Refinement of the Kaolinite Structure from Single-Crystal Synchrotron Data, Clays and Clay Minerals, 47, 4, 487-494, 1999.
  • Caglar, B., Structural characterization of kaolinite-nicotinamide intercalation composite, Journal of Molecular Structure, 1020, 48-55, 2012.
  • Zhao, J., Gao, W., Tao, Z.G., Guo, H.Y. ve He, M.C., Density functional theory investigation of different coverage hydrogen adsorption on the kaolinite (001) surface, Clay Minerals, 1-27, 2018.
  • Turhan Y., Doğan M. ve Alkan, M., Poly[vinyl chloride)/Kaolinite nanocomposites: Characterization and thermal and optical properties, Industrial&Engineering Chemistry Research, 49, 1503-1513, 2010.
  • Kristóf, É., The effect of mechanical treatment on the crystal structure and thermal behavior of kaolinite, Clays and Clay Minerals, 41, 5, 608-612, 1993.
  • Johnston, C.T., Agnew, S.F. ve Bish, D.L., Polarized single-crystal Fourier-Transform Infrared Microscopy of ouray dickite and keokuk kaolinite, Clays and Clay Minerals, 38, 573-583, 1990.
  • Kristó, J., Frost, R.L., Felinger, A. ve Mink, J., FTIR spectroscopic study of intercalated kaolinite, Journal of Molecular Structure, 410-411, 119-122, 1997.
  • Trivedi, M.K., Tallapragada, R.M., Branton, A., Trivedi D., Nayak G., Mishra, R.K. ve Jana, S., Characterization of physical, thermal and spectral properties of biofield treated 2, 6-diaminopyridine, Journal of Developing Drugs, 4, 3, 2015.
  • Li, D., Chang, X., Hu, Z., Wang, Q., Tu, Z. ve Li, R. Selective solid-phase extraction of trace Au(III), Pd(II) and Pt(IV) using activated carbon modified with 2,6-diaminopyridine, Microchim Acta, 174, 131-136, 2011.
  • Frost, R. L., Kristof, J., Paroz, G. N. ve Kloprogge, J. T., Role of water in the intercalation of kaolinite with hydrazine, Journal of Colloid and Interface Science, 208, 1, 216-225, 1998.
  • Komori, Y., Intercalation of alkylamines and water into kaolinite with methanol kaolinite as an intermediate, Applied Clay Science, 15, 1-2, 241-252, 1999.
  • Frost, R. Kristof, J., Horvath, E. ve Kloprogge, J., Vibrational spectroscopy of formamide-intercalated kaolinites, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 56, 6, 1191-1204, 2000.
  • Michalková, A., Tunega, D. ve Nagy, L.T., Theoretical study of interactions of dickite and kaolinite with small organic molecules, Journal of Molecular Structure: THEOCHEM, 581, 1-3, 37-49, 2002.
  • Hayashi, S., NMR study of dynamics and evolution of guest molecules in kaolinite/dimethyl sulfoxide intercalation compound, Clays and Clay Minerals, 45, 724-7322, 1997.
  • Thompson, J.G. ve Cuff, C., Crystal structure of kaolinite: Dimethylsulfoxide intercalate, Clays and Clay Minerals, 33, 490-500, 1985.
  • Frost, R.L., Kristof, J., Paroz, G.N. ve Kloprogge, J.T., Intercalation of kaolinite with acetamide, Physics and Chemistry of Minerals, 26, 257-263, 1999.
  • Cruz, M.D.R. ve Franco, F., Thermal behavior of the kaolinite–hydrazine intercalation complex, Clays and Clay Minerals, 48, 5, 586-592, 2000.
  • Zhang, Y., Liu, Q., Wu, Z., Zheng, Q. ve Cheng, H., Thermal behavior analysis of kaolinite–dimethylsulfoxide intercalation complex, Journal of Thermal Analysis and Calorimetry, 110, 3, 1167-1172, 2011.
  • Bellotto, M., Gualtieri, A. ve Artioli, G., Kinetic study of the kaolinitemullite reaction sequence. Part I: kaolinite dehydroxylation, Physics and Chemistry of Minerals, 22, 207-214, 1995.
  • Gualtieri, A., Bellotto, M. ve Artioli, G., Kinetic study of the kaolinitemullite reaction sequence. Part II: mullite formation. Physics and Chemistry of Minerals, 22, 215-222, 1995.
  • Shahwan, T., Zünbül, B., Tunusoğlu, Ö. ve Eroğlu, A.E., AAS, XRPD, SEM/EDS, and FTIR characterization of Zn2+ retention by calcite, calcite–kaolinite, and calcite–clinoptilolite minerals, Journal of Colloid and Interface Science, 286, 2, 471-478, 2005.
  • Avila, LR., de Faria, E.H., Ciuffi, K.J., Nassar, E.J., Calefi, P.S., Vicente, M.A. ve Trujillano, R., New synthesis strategies for effective functionalization of kaolinite and saponite with silylating agents, Journal of Colloid and Interface Science, 341, 1, 186-193, 2010.
  • Cheng, H., Liu, Q., Zhang, J., Yang, J. ve Frost, R.L., Delamination of kaolinite–potassium acetate intercalates by ball-milling, Journal of Colloid and Interface Science, 348, 2, 355-359, 2010.
  • de Faria, E.H., Ciuffi, K.J., Nassar, E.J., Vicente, M.A., Trujillano, R. ve Calefi, P.S., Novel reactive amino-compound: Tris(hydroxymethyl)aminomethane covalently grafted on kaolinite, Applied Clay Science, 48, 3, 516-521, 2010.
  • Sun, D., Li, B., Li, Y., Yu, C., Zhang, B. Ve Fei, H., Characterization of exfoliated/delamination kaolinite, Materials Research Bulletin, 46, 1, 101-104, 2011.
  • Campos, F., De La Torre, L., Román, M., Garcia, A. ve Elguezabal, A.A., Montmorillonite clay intercalated with nanoparticles for hydrogen storage, Journal of Ceramic Processing Research, 9, 5, 482-485, 2008.
  • Deer, W., Howie, R. ve Zussman, J., An introduction to the rockforming minerals, New York: Wiley-Interscience, 2nd ed., 1992.

Modification and characterization of kaolinite clay for hydrogen storage

Year 2023, Volume: 25 Issue: 1, 186 - 202, 16.01.2023
https://doi.org/10.25092/baunfbed.1104156

Abstract

In recent years, due to the decrease in energy resources in the world, scientific studies on the use of renewable energy resources are continuing rapidly with the thought that it can be an alternative in the fields of safe and sustainable energy. Hydrogen is a clean renewable energy source that has the potential to be used in different fields such as power generation, heat, transportation and and energy storage systems and has no impact on the environment globally. Kaolinite is a clay mineral with a 1:1 layered structure and a low interlayer distance. Kaolinite can be used for many storage applications because the adsorption capacity of clay minerals is interesting. Studies show that clay minerals can be used as hydrogen storage material, but it is difficult to keep hydrogen molecules between the kaolinite layers, since the distance between layers is less than other clays. Therefore, pretreatments attract attention to increase the hydrogen storage capacity of kaolinite. In this study, kaolinite (K), which has a 1:1 clay layer, was first intercalated (KD) with dimethyl sulfoxide (DMSO) in order to hold hydrogen molecules to kaolinite, and then 2,6-diaminopyridine (2,6-DAP) molecules were replaced with DMSO molecules. In the basic characterization of the samples obtained, surface areas and pore size distributions with BET surface area determination device; morphology with SEM device; structural characterization with FTIR and XRD devices; the thermal stability was determined with the TGA device. The hydrogen storage capacity of the modified kaolinite was measured to be higher than kaolinite at cryogenic temperature and pressure range of 0-7 bar. At 7 bar pressure, the hydrogen storage capacity of kaolinite by weight was determined as 0.002% and modified kaolinite as 0.018%. In the light of all these characterizations, it was concluded that the hydrogen storage capacity of clays can be increased by modification and can be used as a hydrogen storage material in the energy field.

References

  • Fayaz H., Saidur R., Razali N., Anuar F.S., Saleman A.R. ve Islam M.R., An overview of hydrogen as a vehicle fuel, Renewable and Sustainable Energy Reviews, 16, 5511-5528, 2012.
  • Roszak R., Firlej L., Roszak S., Pfeifer P. ve Kuchta B., Hydrogen storage by adsorption in porous materials: Is it possible?, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 496, 69-76, 2016.
  • Zhao, J., Gao, W., Tao, Z.G., Guo, H.Y. ve He, M.C., Density functional theory investigation of different coverage hydrogen adsorption on the kaolinite (001) surface, Clay Minerals, 1-27, 2018.
  • Sawai, N. ve Harun, F., Hydrogen Adsorption on Agricultural-Based Activated Carbons, Zeolite Templated-Carbons and Clay-Based Materials; A Review, Journal of Industrial Engineering Research, 1, 5,1-7, 2015.
  • Zhang W.B., Zhang S.L., Zhang Z.J., Wang L.L. ve Yang W., The hydrogen adsorption on Zr-decorated LiB (001): A DFT study, Vacuum, 110, 62-68, 2014.
  • Ren J.W., Musyoka N.M., Langmi H.W., Mathe M. ve Liao S.J., Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review, International Journal of Hydrogen Energy, 42, 289-311, 2017.
  • Mondelli, C., Bardelli, F., Vitillo, J.G., Didier, M., Brendle, J., Cavicchia, D.R., Robinet J.C. ve Charlet L., Hydrogen adsorption and diffusion in synthetic Na-montmorillonites at high pressures and temperature, International Journal of Hydrogen Energy, 40, 2698-2709, 2015.
  • Alver, B.E., Adsorption studies of hydrogen and ethylene on cation-exchanged bentonite, Clay Minerals, 52, 1, 67-73, 2017.
  • Almasoudi, A. ve Mokaya, R., Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework, Journal of Materials Chemistry, 2, 1, 2012.
  • Cai, J., Li, L., Lv, X., Yang, C. ve Zhao, X., Large surface area ordered porous carbons via nanocasting zeolite 10x and high performance for hydrogen storage application, ACS Applied Materials and Interfaces, 6, 1, 167-175, 2014.
  • Niaz, S., Manzoor, T. ve Pandith A.H., Hydrogen storage: Materials, methods and perspectives, Renewable and Sustainable Energy Reviews, 50, 457-469, 2015.
  • Bicil, Z. ve Doğan, M., Characterization of Activated Carbons Prepared from Almond Shells and Their Hydrogen Storage Properties, Energy&Fuels, 35, 12, 10227-10240, 2021.
  • Doğan, M., Selek, A., Turhan, O., Kızılduman, B. K. ve Bicil, Z., Different functional groups functionalized hexagonal boron nitride (h-BN) nanoparticles and multi-walled carbon nanotubes (MWCNT) for hydrogen storage, Fuel, 303, 121335, 2021.
  • Kızılduman, B.K., Turhan, Y. ve Doğan, M., Mesoporous carbon spheres produced by hydrothermal carbonization from rice husk: Optimization, characterization and hydrogen storage, Advanced Powder Technology, 2, 11, 4222-4234, 2021.
  • Sun Q.Q., Yang T.L., Yang L., Fan K., Peng S.M., Long X.G., Zhou X.S., Zu X.T. ve Du J.C., First-principles study on the adsorption and dissociation of H2 molecules on Be (0001) surfaces, Computational Condensed Matter, 117, 251-258, 2016.
  • Bachurin D.V. ve Viadimirov P.V., Ab initio study of beryllium surfaces with different hydrogen coverages, Acta Materialia, 134, 81–92, 2017.
  • Mahdi R.S. ve Sahar Y., Theoretical study of adsorption of H2 gas on pristine and AsGa-doped (4, 4) armchair models of BPNTs, Computational Condensed Matter, 3, 21-29, 2015.
  • Sigot L., Ducom G. ve Germain P., Adsorption of hydrogen sulfide (H2S) on zeolite (Z): 404 Retention Mechanism, Chemical Engineering Journal, 287, 47-53, 2016.
  • Gu C., Gao G.H. ve Yu Y.X., Density functional study of the adsorption of hydrogen in 343 carbon nano-tube, Journal of the Chinese Rare Earth Society, 22, 97-100, 2004.
  • Ruiz-García, C., Pérez-Carvajal, J., Berenguer-Murcia, A., Darder, M., Aranda, P., Cazorla-Amorós, D. Ve Ruiz-Hitzky, E., Clay-supported graphene materials: application to hydrogen storage, Physical Chemistry Chemical Physics, 15, 42, 18635, 2013.
  • Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V. A. ve Stanjek, H., Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006, Clays and Clay Minerals, 54, 6, 761-772, 2006.
  • Neder, R.B., Refinement of the Kaolinite Structure from Single-Crystal Synchrotron Data, Clays and Clay Minerals, 47, 4, 487-494, 1999.
  • Caglar, B., Structural characterization of kaolinite-nicotinamide intercalation composite, Journal of Molecular Structure, 1020, 48-55, 2012.
  • Zhao, J., Gao, W., Tao, Z.G., Guo, H.Y. ve He, M.C., Density functional theory investigation of different coverage hydrogen adsorption on the kaolinite (001) surface, Clay Minerals, 1-27, 2018.
  • Turhan Y., Doğan M. ve Alkan, M., Poly[vinyl chloride)/Kaolinite nanocomposites: Characterization and thermal and optical properties, Industrial&Engineering Chemistry Research, 49, 1503-1513, 2010.
  • Kristóf, É., The effect of mechanical treatment on the crystal structure and thermal behavior of kaolinite, Clays and Clay Minerals, 41, 5, 608-612, 1993.
  • Johnston, C.T., Agnew, S.F. ve Bish, D.L., Polarized single-crystal Fourier-Transform Infrared Microscopy of ouray dickite and keokuk kaolinite, Clays and Clay Minerals, 38, 573-583, 1990.
  • Kristó, J., Frost, R.L., Felinger, A. ve Mink, J., FTIR spectroscopic study of intercalated kaolinite, Journal of Molecular Structure, 410-411, 119-122, 1997.
  • Trivedi, M.K., Tallapragada, R.M., Branton, A., Trivedi D., Nayak G., Mishra, R.K. ve Jana, S., Characterization of physical, thermal and spectral properties of biofield treated 2, 6-diaminopyridine, Journal of Developing Drugs, 4, 3, 2015.
  • Li, D., Chang, X., Hu, Z., Wang, Q., Tu, Z. ve Li, R. Selective solid-phase extraction of trace Au(III), Pd(II) and Pt(IV) using activated carbon modified with 2,6-diaminopyridine, Microchim Acta, 174, 131-136, 2011.
  • Frost, R. L., Kristof, J., Paroz, G. N. ve Kloprogge, J. T., Role of water in the intercalation of kaolinite with hydrazine, Journal of Colloid and Interface Science, 208, 1, 216-225, 1998.
  • Komori, Y., Intercalation of alkylamines and water into kaolinite with methanol kaolinite as an intermediate, Applied Clay Science, 15, 1-2, 241-252, 1999.
  • Frost, R. Kristof, J., Horvath, E. ve Kloprogge, J., Vibrational spectroscopy of formamide-intercalated kaolinites, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 56, 6, 1191-1204, 2000.
  • Michalková, A., Tunega, D. ve Nagy, L.T., Theoretical study of interactions of dickite and kaolinite with small organic molecules, Journal of Molecular Structure: THEOCHEM, 581, 1-3, 37-49, 2002.
  • Hayashi, S., NMR study of dynamics and evolution of guest molecules in kaolinite/dimethyl sulfoxide intercalation compound, Clays and Clay Minerals, 45, 724-7322, 1997.
  • Thompson, J.G. ve Cuff, C., Crystal structure of kaolinite: Dimethylsulfoxide intercalate, Clays and Clay Minerals, 33, 490-500, 1985.
  • Frost, R.L., Kristof, J., Paroz, G.N. ve Kloprogge, J.T., Intercalation of kaolinite with acetamide, Physics and Chemistry of Minerals, 26, 257-263, 1999.
  • Cruz, M.D.R. ve Franco, F., Thermal behavior of the kaolinite–hydrazine intercalation complex, Clays and Clay Minerals, 48, 5, 586-592, 2000.
  • Zhang, Y., Liu, Q., Wu, Z., Zheng, Q. ve Cheng, H., Thermal behavior analysis of kaolinite–dimethylsulfoxide intercalation complex, Journal of Thermal Analysis and Calorimetry, 110, 3, 1167-1172, 2011.
  • Bellotto, M., Gualtieri, A. ve Artioli, G., Kinetic study of the kaolinitemullite reaction sequence. Part I: kaolinite dehydroxylation, Physics and Chemistry of Minerals, 22, 207-214, 1995.
  • Gualtieri, A., Bellotto, M. ve Artioli, G., Kinetic study of the kaolinitemullite reaction sequence. Part II: mullite formation. Physics and Chemistry of Minerals, 22, 215-222, 1995.
  • Shahwan, T., Zünbül, B., Tunusoğlu, Ö. ve Eroğlu, A.E., AAS, XRPD, SEM/EDS, and FTIR characterization of Zn2+ retention by calcite, calcite–kaolinite, and calcite–clinoptilolite minerals, Journal of Colloid and Interface Science, 286, 2, 471-478, 2005.
  • Avila, LR., de Faria, E.H., Ciuffi, K.J., Nassar, E.J., Calefi, P.S., Vicente, M.A. ve Trujillano, R., New synthesis strategies for effective functionalization of kaolinite and saponite with silylating agents, Journal of Colloid and Interface Science, 341, 1, 186-193, 2010.
  • Cheng, H., Liu, Q., Zhang, J., Yang, J. ve Frost, R.L., Delamination of kaolinite–potassium acetate intercalates by ball-milling, Journal of Colloid and Interface Science, 348, 2, 355-359, 2010.
  • de Faria, E.H., Ciuffi, K.J., Nassar, E.J., Vicente, M.A., Trujillano, R. ve Calefi, P.S., Novel reactive amino-compound: Tris(hydroxymethyl)aminomethane covalently grafted on kaolinite, Applied Clay Science, 48, 3, 516-521, 2010.
  • Sun, D., Li, B., Li, Y., Yu, C., Zhang, B. Ve Fei, H., Characterization of exfoliated/delamination kaolinite, Materials Research Bulletin, 46, 1, 101-104, 2011.
  • Campos, F., De La Torre, L., Román, M., Garcia, A. ve Elguezabal, A.A., Montmorillonite clay intercalated with nanoparticles for hydrogen storage, Journal of Ceramic Processing Research, 9, 5, 482-485, 2008.
  • Deer, W., Howie, R. ve Zussman, J., An introduction to the rockforming minerals, New York: Wiley-Interscience, 2nd ed., 1992.
There are 48 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Berna Koçer Kızılduman 0000-0002-0826-3556

Publication Date January 16, 2023
Submission Date April 16, 2022
Published in Issue Year 2023 Volume: 25 Issue: 1

Cite

APA Koçer Kızılduman, B. (2023). Kaolinit kilinin hidrojen depolama amaçlı kullanımı için modifikasyonu ve karakterizasyonu. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1), 186-202. https://doi.org/10.25092/baunfbed.1104156
AMA Koçer Kızılduman B. Kaolinit kilinin hidrojen depolama amaçlı kullanımı için modifikasyonu ve karakterizasyonu. BAUN Fen. Bil. Enst. Dergisi. January 2023;25(1):186-202. doi:10.25092/baunfbed.1104156
Chicago Koçer Kızılduman, Berna. “Kaolinit Kilinin Hidrojen Depolama amaçlı kullanımı için Modifikasyonu Ve Karakterizasyonu”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, no. 1 (January 2023): 186-202. https://doi.org/10.25092/baunfbed.1104156.
EndNote Koçer Kızılduman B (January 1, 2023) Kaolinit kilinin hidrojen depolama amaçlı kullanımı için modifikasyonu ve karakterizasyonu. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 1 186–202.
IEEE B. Koçer Kızılduman, “Kaolinit kilinin hidrojen depolama amaçlı kullanımı için modifikasyonu ve karakterizasyonu”, BAUN Fen. Bil. Enst. Dergisi, vol. 25, no. 1, pp. 186–202, 2023, doi: 10.25092/baunfbed.1104156.
ISNAD Koçer Kızılduman, Berna. “Kaolinit Kilinin Hidrojen Depolama amaçlı kullanımı için Modifikasyonu Ve Karakterizasyonu”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/1 (January 2023), 186-202. https://doi.org/10.25092/baunfbed.1104156.
JAMA Koçer Kızılduman B. Kaolinit kilinin hidrojen depolama amaçlı kullanımı için modifikasyonu ve karakterizasyonu. BAUN Fen. Bil. Enst. Dergisi. 2023;25:186–202.
MLA Koçer Kızılduman, Berna. “Kaolinit Kilinin Hidrojen Depolama amaçlı kullanımı için Modifikasyonu Ve Karakterizasyonu”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 25, no. 1, 2023, pp. 186-02, doi:10.25092/baunfbed.1104156.
Vancouver Koçer Kızılduman B. Kaolinit kilinin hidrojen depolama amaçlı kullanımı için modifikasyonu ve karakterizasyonu. BAUN Fen. Bil. Enst. Dergisi. 2023;25(1):186-202.