Research Article
BibTex RIS Cite

AISI 440B martenzitik paslanmaz çeliğinin aşınma ve korozyon dayanımına östenitleme sıcaklığının etkisinin incelenmesi

Year 2023, Volume: 25 Issue: 2, 634 - 649, 07.07.2023
https://doi.org/10.25092/baunfbed.1248513

Abstract

Martenzitik paslanmaz çelikler iyi mekanik özellikleri ve orta derecede korozyon dayanımları ile diğer paslanmaz çeliklerden ayrılmaktadırlar. Belirli uygulamalarda üstün özelliklere duyulan ihtiyaç, bu çeliklerin performansının iyileştirilmesi konusunda geniş araştırmalara yol açmıştır. Bunun için ısıl işlem parametrelerinin doğru belirlenmesi önerilmektedir. Bu çalışmada AISI 440B martenzitik paslanmaz çeliğin östenitleme sıcaklığının aşınma ve korozyon dayanımına önemli ölçüde etkilediğini ortaya konmuştur. Östenitleme sıcaklığı arttıkça Cr23C6 karbürleri çözünmekte ve östenit matriste C ve Cr zenginleşmesi meydana gelmektedir. Cr zenginleşmesi korozyon dayanımını iyileştirirken, C zenginleşmesi malzeme sertliğini artırmaktadır. Ancak yüksek östenitleme sıcaklıklarında, Mf ‘in düşmesi sebebiyle kalıntı östenit miktarı artmaktadır. Aynı zamanda östenit tane irileşmesi de meydana geldiğinden, sertlikte önemli derecede azalma meydana gelmektedir. Öte yandan yüksek karbon içeriği sebebiyle martenzit fazın kristal kafesinde çarpılmalar meydana gelmekte olup, bu da koruyucu oksit filmin kararlılığını olumsuz etkileyerek korozyon dayanımını düşürmektedir. Bu çalışmada, en iyi aşınma ve korozyon dayanımı elde etmek için en uygun östenitleme sıcaklığı 1080°C olarak tespit edilmiştir.

Supporting Institution

Manisa Celal Bayar Üniversitesi

Project Number

2021-043

References

  • C. Zhang, R. Chen, F. Luo, C. Du, and W. Shi, “Effect of heat treatment process on microstructure and properties of H13 steel,” Metal Science and Heat Treatment,vol. 37, no. 10, pp. 119–121, 2012.
  • M. Ramezani, T. Pasang, Z. Chen, T. Neitzert, and D. Au, “Evaluation of carbon diffusion in heat treatment of H13 tool steel under different atmospheric conditions,”, Journal of Materials Science and Chemical Engineering,vol. 4, no. 2, pp. 114–125, 2015, doi: 10.1016/j.jmrt.2014.10.014.
  • L. D. Barlow and M. Du Toit, “Effect of austenitizing heat treatment on the microstructure and hardness of martenzitic stainless steel AISI 420,” Journal of Materials Engineering and Performance, vol. 21, no. 7, pp. 1327–1336, 2012,
  • A. Rajasekhar, G. Madhusudhan Reddy, T. Mohandas, and V. S. R. Murti, “Influence of austenitizing temperature on microstructure and mechanical properties of AISI 431 martenzitic stainless steel electron beam welds,” Material and Design, vol. 30, no. 5, pp. 1612–1624, 2009, doi: 10.1016/j.matdes.2008.07.042.
  • I. Bösing, L. Cramer, M. Steinbacher, H. W. Zoch, J. Thöming, and M. Baune, “Influence of heat treatment on the microstructure and corrosion resistance of martenzitic stainless steel,” AIP Advances, vol. 9, no. 6, 2019, doi: 10.1063/1.5094615.
  • I. Calliari, M. Zanesco, M. Dabalà, K. Brunelli, and E. Ramous, “Investigation of microstructure and properties of a Ni-Mo martenzitic stainless steel,” Material and Design, vol. 29, no. 1, pp. 246–250, 2008, doi: 10.1016/j.matdes.2006.11.020.
  • S. S. M. Tavares, D. Fruchart, S. Miraglia, and D. Laborie, “Magnetic properties of an AISI 420 martenzitic stainless steel,” Journal of Alloys and Compound,vol. 312, no. 1–2, pp. 307–314, 2000, doi: 10.1016/S0925-8388(00)01149-X.
  • C. G. De Andrés, G. Caruana, and L. F. Alvarez, “Control of M23C6 carbides in 0.45C-13Cr martenzitic stainless steel by means of three representative heat treatment parameters,” Materials Science and Engineering, vol. 241, no. 1–2, pp. 211–215, 1998, doi: 10.1016/s0921-5093(97)00491-7.
  • A. F. Candelária and C. E. Pinedo, “Influence of the heat treatment on the corrosion resistance of the martenzitic stainless steel type AISI 420,” Journal of Materials Science Letters, vol. 22, no. 16, pp. 1151–1153, 2003, doi: 10.1023/A:102517912
  • J. G. Gonzalez-Rodriguez, G. Bahena-Martinez, and V. M. Salinas-Bravo, “Effect of heat treatment on the stress corrosion cracking behaviour of 403 stainless steel in NaCl at 95 °C,” Materials Letters, vol. 43, no. 4, pp. 208–214, 2000, doi: 10.1016/S0167-577X(99)00261-X.
  • S. C. Krishna, N. K. Gangwar, A. K. Jha, B. Pant, and K. M. George, “Effect of Heat Treatment on the Microstructure and Hardness of 17Cr-0.17N-0.43C-1.7 Mo Martenzitic Stainless Steel,” Journal of Materials Engineering and Performance,vol. 24, no. 4, pp. 1656–1662, 2015, doi: 10.1007/s11665-015-1431-3.
  • M. Kianezhad and S. A. Sajjadi, “Improvement of quench factor analysis in phase and hardness prediction of a quenched steel,” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Trans. A Phys. Metall. Mater. Sci., vol. 44, no. 5, pp. 2053–2059, 2013, doi: 10.1007/s11661-012-1574-x.
  • S. Ghosh and S. Mondal, “Effect of Heat Treatment on Microstructure and Mechanical Properties of Duplex Stainless Steel,” Transactions of the Indian Institute of Metals, vol. 61, no. 1, pp. 33–37, 2008.
  • J. Y. Li, P. Zhao, J. Yanagimoto, S. Sugiyama, and Y. L. Chen, “Effects of heat treatment on the microstructures and mechanical properties of a new type of nitrogen-containing die steel,” International Journal of Minerals, Metallurgy and Materials, vol. 19, no. 6, pp. 511–517, 2012, doi: 10.1007/s12613-012-0588
  • C. García De Andrés, L. F. Álvarez, V. López, and J. A. Jiménez, “Effects of carbide-forming elements on the response to thermal treatment of the X45Cr13 martenzitic stainless steel,” Journal of Materials Science, vol. 33, no. 16, pp. 4095–4100, 1998, doi: 10.1023/A:1004424329556.
  • W. Mao, S. Gao, Y. Bai, M. heom Park, A. Shibata, and N. Tsuji, “Effective grain size refinement of an Fe-24Ni-0.3C metastable austenitic steel by a modified two-step cold rolling and annealing process utilizing the deformation-induced martenzitic transformation and its reverse transformation,” Journal of Materials Research and Technology, vol. 17, pp. 2690–2700, 2022, doi: 10.1016/j.jmrt.2022.02.031.
  • D. Zhao et al., “Effects of tempering temperature on the microstructure and mechanical properties of T92 heat-resistant steel,” Metals (Basel), vol. 9, no. 2, pp. 1–13, 2019, doi: 10.3390/met9020194.
  • B. Denand et al., “Carbon content evolution in austenite during austenitization studied by in situ synchrotron X-ray diffraction of a hypoeutectoid steel,” Materialia,vol. 10, pp. 1–30, 2020, doi: 10.1016/j.mtla.2020.100664.
  • A. Rosenauer et al., “Influence of delta ferrite on the impact toughness of a PH 13-8 Mo maraging steel,” Materials Science and Engineering A., vol. 856, no. September, p. 144024, 2022, doi: 10.1016/j.msea.2022.144024.
  • K. S. Chandravathi, K. Laha, K. Bhanu Sankara Rao, and S. L. Mannan, “Microstructure and tensile properties of modified 9Cr-1Mo steel (grade 91),” Materials Science and Technology, vol. 17, no. 5, pp. 559–565, 2001
  • H. U. Hong, B. S. Rho, and S. W. Nam, “A study on the crack initiation and growth from δ-ferrite/γ phase interface under continuous fatigue and creep-fatigue conditions in type 304L stainless steels,” International Journal of Fatigue, vol. 24, no. 10, pp. 1063–1070, 2002, doi: 10.1016/S0142-1123(02)00019-1.
  • Q. Gao, Y. Liu, X. Di, Z. Dong, and Z. Yan, “The isochronal δ → γ transformation of high Cr ferritic heat-resistant steel during cooling,” Journal of Materials Science, vol. 46, no. 21, pp. 6910–6915, 2011, doi: 10.1007/s10853-011-5656-8.

Investigation of the effect of austenitizing temperature on wear and corrosion resistance of AISI 440B martensitic stainless steel

Year 2023, Volume: 25 Issue: 2, 634 - 649, 07.07.2023
https://doi.org/10.25092/baunfbed.1248513

Abstract

Martensitic stainless steels are distinguished from other stainless steels by their good mechanical properties and moderate corrosion resistance. The need for superior properties in certain applications has led to extensive research into improving the performance of these steels. For this, it is recommended that the heat treatment parameters be determined correctly. In this study, it has been revealed that the austenitization temperature of AISI 440B martensitic stainless steel has a significant effect on wear and corrosion resistance. As the austenitization temperature increases, Cr23C6 carbides dissolve and C and Cr enrichment occur in the austenite matrix. While Cr enrichment improves corrosion resistance, C enrichment increases material hardness. However, at high austenitizing temperatures, the amount of residual austenite increases due to the decrease of Mf. Since austenite grain coarsening also occurs, a significant decrease in hardness occurs. On the other hand, due to the high carbon content, distortions occur in the crystal lattice of the martensite phase, which negatively affects the stability of the protective oxide film and reduces the corrosion resistance. In this study, the optimum austenitization temperature was determined as 1080°C to obtain the best wear and corrosion resistance.

Project Number

2021-043

References

  • C. Zhang, R. Chen, F. Luo, C. Du, and W. Shi, “Effect of heat treatment process on microstructure and properties of H13 steel,” Metal Science and Heat Treatment,vol. 37, no. 10, pp. 119–121, 2012.
  • M. Ramezani, T. Pasang, Z. Chen, T. Neitzert, and D. Au, “Evaluation of carbon diffusion in heat treatment of H13 tool steel under different atmospheric conditions,”, Journal of Materials Science and Chemical Engineering,vol. 4, no. 2, pp. 114–125, 2015, doi: 10.1016/j.jmrt.2014.10.014.
  • L. D. Barlow and M. Du Toit, “Effect of austenitizing heat treatment on the microstructure and hardness of martenzitic stainless steel AISI 420,” Journal of Materials Engineering and Performance, vol. 21, no. 7, pp. 1327–1336, 2012,
  • A. Rajasekhar, G. Madhusudhan Reddy, T. Mohandas, and V. S. R. Murti, “Influence of austenitizing temperature on microstructure and mechanical properties of AISI 431 martenzitic stainless steel electron beam welds,” Material and Design, vol. 30, no. 5, pp. 1612–1624, 2009, doi: 10.1016/j.matdes.2008.07.042.
  • I. Bösing, L. Cramer, M. Steinbacher, H. W. Zoch, J. Thöming, and M. Baune, “Influence of heat treatment on the microstructure and corrosion resistance of martenzitic stainless steel,” AIP Advances, vol. 9, no. 6, 2019, doi: 10.1063/1.5094615.
  • I. Calliari, M. Zanesco, M. Dabalà, K. Brunelli, and E. Ramous, “Investigation of microstructure and properties of a Ni-Mo martenzitic stainless steel,” Material and Design, vol. 29, no. 1, pp. 246–250, 2008, doi: 10.1016/j.matdes.2006.11.020.
  • S. S. M. Tavares, D. Fruchart, S. Miraglia, and D. Laborie, “Magnetic properties of an AISI 420 martenzitic stainless steel,” Journal of Alloys and Compound,vol. 312, no. 1–2, pp. 307–314, 2000, doi: 10.1016/S0925-8388(00)01149-X.
  • C. G. De Andrés, G. Caruana, and L. F. Alvarez, “Control of M23C6 carbides in 0.45C-13Cr martenzitic stainless steel by means of three representative heat treatment parameters,” Materials Science and Engineering, vol. 241, no. 1–2, pp. 211–215, 1998, doi: 10.1016/s0921-5093(97)00491-7.
  • A. F. Candelária and C. E. Pinedo, “Influence of the heat treatment on the corrosion resistance of the martenzitic stainless steel type AISI 420,” Journal of Materials Science Letters, vol. 22, no. 16, pp. 1151–1153, 2003, doi: 10.1023/A:102517912
  • J. G. Gonzalez-Rodriguez, G. Bahena-Martinez, and V. M. Salinas-Bravo, “Effect of heat treatment on the stress corrosion cracking behaviour of 403 stainless steel in NaCl at 95 °C,” Materials Letters, vol. 43, no. 4, pp. 208–214, 2000, doi: 10.1016/S0167-577X(99)00261-X.
  • S. C. Krishna, N. K. Gangwar, A. K. Jha, B. Pant, and K. M. George, “Effect of Heat Treatment on the Microstructure and Hardness of 17Cr-0.17N-0.43C-1.7 Mo Martenzitic Stainless Steel,” Journal of Materials Engineering and Performance,vol. 24, no. 4, pp. 1656–1662, 2015, doi: 10.1007/s11665-015-1431-3.
  • M. Kianezhad and S. A. Sajjadi, “Improvement of quench factor analysis in phase and hardness prediction of a quenched steel,” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Trans. A Phys. Metall. Mater. Sci., vol. 44, no. 5, pp. 2053–2059, 2013, doi: 10.1007/s11661-012-1574-x.
  • S. Ghosh and S. Mondal, “Effect of Heat Treatment on Microstructure and Mechanical Properties of Duplex Stainless Steel,” Transactions of the Indian Institute of Metals, vol. 61, no. 1, pp. 33–37, 2008.
  • J. Y. Li, P. Zhao, J. Yanagimoto, S. Sugiyama, and Y. L. Chen, “Effects of heat treatment on the microstructures and mechanical properties of a new type of nitrogen-containing die steel,” International Journal of Minerals, Metallurgy and Materials, vol. 19, no. 6, pp. 511–517, 2012, doi: 10.1007/s12613-012-0588
  • C. García De Andrés, L. F. Álvarez, V. López, and J. A. Jiménez, “Effects of carbide-forming elements on the response to thermal treatment of the X45Cr13 martenzitic stainless steel,” Journal of Materials Science, vol. 33, no. 16, pp. 4095–4100, 1998, doi: 10.1023/A:1004424329556.
  • W. Mao, S. Gao, Y. Bai, M. heom Park, A. Shibata, and N. Tsuji, “Effective grain size refinement of an Fe-24Ni-0.3C metastable austenitic steel by a modified two-step cold rolling and annealing process utilizing the deformation-induced martenzitic transformation and its reverse transformation,” Journal of Materials Research and Technology, vol. 17, pp. 2690–2700, 2022, doi: 10.1016/j.jmrt.2022.02.031.
  • D. Zhao et al., “Effects of tempering temperature on the microstructure and mechanical properties of T92 heat-resistant steel,” Metals (Basel), vol. 9, no. 2, pp. 1–13, 2019, doi: 10.3390/met9020194.
  • B. Denand et al., “Carbon content evolution in austenite during austenitization studied by in situ synchrotron X-ray diffraction of a hypoeutectoid steel,” Materialia,vol. 10, pp. 1–30, 2020, doi: 10.1016/j.mtla.2020.100664.
  • A. Rosenauer et al., “Influence of delta ferrite on the impact toughness of a PH 13-8 Mo maraging steel,” Materials Science and Engineering A., vol. 856, no. September, p. 144024, 2022, doi: 10.1016/j.msea.2022.144024.
  • K. S. Chandravathi, K. Laha, K. Bhanu Sankara Rao, and S. L. Mannan, “Microstructure and tensile properties of modified 9Cr-1Mo steel (grade 91),” Materials Science and Technology, vol. 17, no. 5, pp. 559–565, 2001
  • H. U. Hong, B. S. Rho, and S. W. Nam, “A study on the crack initiation and growth from δ-ferrite/γ phase interface under continuous fatigue and creep-fatigue conditions in type 304L stainless steels,” International Journal of Fatigue, vol. 24, no. 10, pp. 1063–1070, 2002, doi: 10.1016/S0142-1123(02)00019-1.
  • Q. Gao, Y. Liu, X. Di, Z. Dong, and Z. Yan, “The isochronal δ → γ transformation of high Cr ferritic heat-resistant steel during cooling,” Journal of Materials Science, vol. 46, no. 21, pp. 6910–6915, 2011, doi: 10.1007/s10853-011-5656-8.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Gökhan Eyici 0000-0002-2503-2565

Nurşen Saklakoğlu 0000-0002-6651-7542

Onur Çimen 0000-0001-5653-7825

Project Number 2021-043
Early Pub Date July 6, 2023
Publication Date July 7, 2023
Submission Date February 7, 2023
Published in Issue Year 2023 Volume: 25 Issue: 2

Cite

APA Eyici, G., Saklakoğlu, N., & Çimen, O. (2023). AISI 440B martenzitik paslanmaz çeliğinin aşınma ve korozyon dayanımına östenitleme sıcaklığının etkisinin incelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(2), 634-649. https://doi.org/10.25092/baunfbed.1248513
AMA Eyici G, Saklakoğlu N, Çimen O. AISI 440B martenzitik paslanmaz çeliğinin aşınma ve korozyon dayanımına östenitleme sıcaklığının etkisinin incelenmesi. BAUN Fen. Bil. Enst. Dergisi. July 2023;25(2):634-649. doi:10.25092/baunfbed.1248513
Chicago Eyici, Gökhan, Nurşen Saklakoğlu, and Onur Çimen. “AISI 440B Martenzitik Paslanmaz çeliğinin aşınma Ve Korozyon dayanımına östenitleme sıcaklığının Etkisinin Incelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, no. 2 (July 2023): 634-49. https://doi.org/10.25092/baunfbed.1248513.
EndNote Eyici G, Saklakoğlu N, Çimen O (July 1, 2023) AISI 440B martenzitik paslanmaz çeliğinin aşınma ve korozyon dayanımına östenitleme sıcaklığının etkisinin incelenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 2 634–649.
IEEE G. Eyici, N. Saklakoğlu, and O. Çimen, “AISI 440B martenzitik paslanmaz çeliğinin aşınma ve korozyon dayanımına östenitleme sıcaklığının etkisinin incelenmesi”, BAUN Fen. Bil. Enst. Dergisi, vol. 25, no. 2, pp. 634–649, 2023, doi: 10.25092/baunfbed.1248513.
ISNAD Eyici, Gökhan et al. “AISI 440B Martenzitik Paslanmaz çeliğinin aşınma Ve Korozyon dayanımına östenitleme sıcaklığının Etkisinin Incelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/2 (July 2023), 634-649. https://doi.org/10.25092/baunfbed.1248513.
JAMA Eyici G, Saklakoğlu N, Çimen O. AISI 440B martenzitik paslanmaz çeliğinin aşınma ve korozyon dayanımına östenitleme sıcaklığının etkisinin incelenmesi. BAUN Fen. Bil. Enst. Dergisi. 2023;25:634–649.
MLA Eyici, Gökhan et al. “AISI 440B Martenzitik Paslanmaz çeliğinin aşınma Ve Korozyon dayanımına östenitleme sıcaklığının Etkisinin Incelenmesi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 25, no. 2, 2023, pp. 634-49, doi:10.25092/baunfbed.1248513.
Vancouver Eyici G, Saklakoğlu N, Çimen O. AISI 440B martenzitik paslanmaz çeliğinin aşınma ve korozyon dayanımına östenitleme sıcaklığının etkisinin incelenmesi. BAUN Fen. Bil. Enst. Dergisi. 2023;25(2):634-49.