Araştırma Makalesi
BibTex RIS Kaynak Göster

Heyelan duyarlılığı değerlendirmelerinde akarsulara uzaklık parametresinin kullanımına yönelik yeni bir yaklaşım

Yıl 2024, Cilt: 26 Sayı: 2, 594 - 614, 15.07.2024
https://doi.org/10.25092/baunfbed.1425508

Öz

Doğal tehlikelerden biri olan heyelanlar nedeniyle, Türkiye’de ve diğer ülkelerde hem can ve mal kayıpları hem de ekonomik ve çevresel kayıplar ortaya çıkabilmektedir. Afet bilinci kavramının, özellikle son yıllarda yaygınlaşması ve gerek, ulusal gerekse uluslararası inisiyatiflerin dikkate aldıkları önlemler ve iyileştirme çalışmaları ile doğal tehlikelerden kaynaklanan zararların, en düşük seviyeye düşürülmesine çalışılmaktadır. Bunlardan, heyelan tehlike ve risk çalışmalarının temel girdi parametrelerinden biri olan heyelan duyarlılık çalışmaları da son derece büyük öneme sahiptir. Heyelan duyarlılık çalışmalarında parametre seçimi ile bu parametrelerin doğru ve temsil edici bir şekilde kullanılması da önemli bir konudur. Bu nedenle, bu çalışma kapsamında, heyelan duyarlılık değerlendirmelerinde sıklıkla ve öznel olarak dikkate alınan akarsulara uzaklık parametresinin kullanımına yönelik olarak yeni bir yaklaşım önerilmesi ve mevcut yöntemlerle karşılaştırmasının yapılması amaçlanmıştır. Heyelan duyarlılığının değerlendirmesinde Frekans Oranı yöntemi temel alınarak, topoğrafik yükseklik, yamaç eğimi, arazi kullanımı, litoloji, bakı, yamaç eğriselliği ve üç farklı yöntemle oluşturulan akarsulara uzaklık parametreleri dikkate alınmıştır. Akarsulara uzaklık parametresi dışındaki parametreler sabit tutularak, üç farklı heyelan duyarlılık haritası üretilmiş ve performansları iki farklı yöntemle sınanmıştır. Bu çalışmada önerilen şekliyle akarsulara uzaklık parametresinin kullanımının, her iki performans sınama yönteminde de en iyi performansı gösterdiği, sonuç heyelan duyarlılık değerlendirmelerinde yaklaşık olarak %10’luk bir iyileştirmeye yol açtığı belirlenmiştir. Önerilen yöntemin nesnel ve kullanılabilir olduğu sonucuna varılmış olsa da farklı sahalarda uygulanarak performansa yönelik etkilerinin araştırılması önerilmektedir.

Kaynakça

  • Varnes, D,J,. Slope Movement Types and Processes. In: Schuster, R.L. and Krizek, R.J., Eds., Landslides, Analysis and Control, Transportation Research Board Special Report No. 176, National Academy of Sciences, 11-33, (1978).
  • CORINE (2006) CORINE Land Cover.https://land.copernicus.eu/pan-european/corine-land-cover (14.09.2022).
  • Yergök, A. F., Akman, Ü., İplikçi, E., Karabalık, N., Keskin N, Mengi, H., Umut, M., Armağan, F., Erdoğan, K., Kaymakçı, H., Çetinkaya, A., Batı Karadeniz Bölgesinin Jeolojisi, 250, MTA Genel Müdürlüğü, Ankara, (1987).
  • Cruden, D.M., Varnes, D.J., Landslide Types and Processes, Special Report , Transportation Research Board, National Academy of Sciences, 247, 36-75, (1996).
  • Guzzetti, F., Cardinali, M., Reichenbach, P., Carrara, A., Comparing landslide maps: a case study in the upper Tiber River Basin, Central Italy, Environmental Management. 25, 3, 247–363, (2000).
  • Van Westen, C. J., Castellanos, E., Kuriakose, S.L., Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Engineering Geology 102, 112–131, (2008).
  • Varnes, D.J., Landslide hazard zonation-a review of principles and practice, 63, UNESCO Press, Paris, (1984).
  • Aleotti, P. and Chowdhury, R.N., Landslide hazard assessments: summary review and new perspectives, Bulletin of Engineering Geology and the Environment, 58, 21-44, (1999).
  • Lima, P., Steger, S., Glade, T., Murillo-Garcia, F.G., Literature review and bibliometric analysis on data-driven assessment of landslide susceptibility, Journal of Mountain Science 19, 6, 1670-1698, (2022).
  • Hasekiogullari, G. D., Ercanoglu, M., A new approach to use AHP in landslide susceptibility mapping: a case study at Yenice (Karabuk, NW Turkey). Natural Hazards 63,1157–1179, (2012).
  • Komac, M., A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in Perialpine Slovenia, Geomorphology, 74, 17-28, (2006).
  • Yalçın, A., GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations, Catena, 72, 1-12, (2008).
  • Ercanoglu, M., Temiz, A., F., Application of logistic regression and fuzzy operators to landslide susceptibility assessment in Azdavay (Kastamonu, Turkey), Environmental Earth Science, 64, 949-964, (2011).
  • Bui, D. T., Pradhan, B., Lofman, O., Revhaug, I., Dick, O. B., Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models, Catena, 96, 28-40, (2012).
  • Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran, National Hazards, 63, 965-996, (2012).
  • Reis, S., Yalcin, A., Atasoy, M., Nisanci, R., Bayrak, T., Erduran, M., Sancar, C., Ekercin, S., Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio and analytical hierarchy methods in Rize province (NE Turkey), Environmental Earth Science, 66, 2063-2073, (2012).
  • Demir, G., Aytekin, M., Akgün, A., İkizler, S. B., Tatar, O., A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood frequency ratio and analytic hierarchy process methods, Natural Hazards, 65, 1481-1506, (2013).
  • Feizizadeh, B., Blaschke, T., GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods fort he Urmia lake basin, Iran, Natural Hazards, 65, 2105-2128, (2013).
  • Akgün, A., Dağ, S., Bulut, F., Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models, Environmental Geology, 54, 1127-1143, (2008).
  • Dağ, S., Bulut F., Coğrafi bilgi sistemleri tabanlı heyelan duyarlılık haritalarının hazırlanmasına bir örnek: Çayeli (Rize, KD Türkiye). Jeoloji Mühendisliği Dergisi, 36(1), 35-62, (2012).
  • Aydoğan, E., Dağ, S., İstatistiksel Yöntemlerle Yukarı Karasu Havzası’nın Kuzeydoğu Bölümünün (Erzurum) Heyelan Duyarlılık Analizi, Turkish Journal of Remote Sensing and GIS, 4(1), 64-82, (2023).
  • Ercanoğlu, M., Bulanık mantık ve istatistiksel yöntemlerle heyelan duyarlılık haritalarının üretilmesi: Batı Karadeniz bölgesi (Kumluca güneyi-Yenice kuzeyi), Doktora Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, (2003).
  • Lee, S., Talib, J. A., Probabilistic landslide susceptibility and factor effect analysis, Environmental Geology, 47, 982–990, (2005)
  • Çevik, E., Topal, T., GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey), Environmental Geology 44, 949–962, (2003).
  • Yalçın, A., GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations, Catena, 72, 1-12, (2008).
  • Nandi, A., Shakoor, A., A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses, Engineering Geology, 110, 11-20, (2009).
  • Yılmaz, I., Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey), Computers&Geoscience, 35, 1125-1138, (2009).
  • Strahler, A. N., Quantitative analysis of watershed geomorphology, Transactions of the American Geophysical Union 38, 913–920, (1957).
  • Gregory, K. J., Walling, D. E., The variation of drainage density within a catchment, Hydrological Sciences Journal, 13, 2, 61-68, (2010).
  • Mandal, B., Mandal, S., Assessment of mountain slope instability in the Lish River basin of Eastern Darjeeling Himalaya using frequency ratio model (FRM), Modeling Earth Systems and Environment, 2, 121, (2016).
  • Sonker, I., Tripathi, J. N., Singh, A. K., Landslide susceptibility zonation using geospatial technique and analytical hierarchy process in Sikkim Himalaya, Quatenary Science Advances, 4, 1, 100039, (2021).
  • Pimiento, E., Shallow landslide susceptibility: modelling and validation, MSc Thesis, Department of Physical Geography and Ecosystem Science, Lund University, Lund, (2010).
  • DeLong, E. R., DeLong, D. M., Clarke-Pearson, D.L., Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach Biometrics, 44,837-845, (1988).

A new approach to utilization of distance to stream parameter in landslide susceptibility assessments

Yıl 2024, Cilt: 26 Sayı: 2, 594 - 614, 15.07.2024
https://doi.org/10.25092/baunfbed.1425508

Öz

Due to landslides, one of the natural hazards, both life and property losses, as well as economic and environmental damages, may occur in Turkey and in the other countries. The concept of disaster awareness has become widespread, especially in recent years, and efforts are being performed to minimize the damages caused by natural hazards through the measures and improvement efforts taken by both national and international initiatives. Among these, landslide susceptibility studies, which are one of the basic input parameters of landslide hazard and risk studies, are of great importance. In landslide susceptibility studies, parameter selection and the correct and representative utilization of these parameters are also important issues. Therefore, within the scope of this study, it was aimed to propose a new approach for the use of the distance to streams parameter, which is frequently and subjectively taken into account in landslide susceptibility assessments, and to compare it with the existing methods. In the evaluation of landslide susceptibility performed by the Frequency Ratio method, topographical elevation, slope, land use, lithology, aspect, slope curvature and distance to streams, produced by three different methodologies, were taken into account. By keeping the parameters constant except for the distance to the streams, three different landslide susceptibility maps were produced and their performances were tested with two different methods. It was determined that the use of the distance to streams parameter, as suggested in this study, showed the best performance in both performance testing methods and resulted in an approximately 10% improvement in landslide susceptibility evaluations. Although it has been concluded that the proposed methodology is objective and usable, it is recommended to investigate its effects on performance by applying it in different areas.

Kaynakça

  • Varnes, D,J,. Slope Movement Types and Processes. In: Schuster, R.L. and Krizek, R.J., Eds., Landslides, Analysis and Control, Transportation Research Board Special Report No. 176, National Academy of Sciences, 11-33, (1978).
  • CORINE (2006) CORINE Land Cover.https://land.copernicus.eu/pan-european/corine-land-cover (14.09.2022).
  • Yergök, A. F., Akman, Ü., İplikçi, E., Karabalık, N., Keskin N, Mengi, H., Umut, M., Armağan, F., Erdoğan, K., Kaymakçı, H., Çetinkaya, A., Batı Karadeniz Bölgesinin Jeolojisi, 250, MTA Genel Müdürlüğü, Ankara, (1987).
  • Cruden, D.M., Varnes, D.J., Landslide Types and Processes, Special Report , Transportation Research Board, National Academy of Sciences, 247, 36-75, (1996).
  • Guzzetti, F., Cardinali, M., Reichenbach, P., Carrara, A., Comparing landslide maps: a case study in the upper Tiber River Basin, Central Italy, Environmental Management. 25, 3, 247–363, (2000).
  • Van Westen, C. J., Castellanos, E., Kuriakose, S.L., Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Engineering Geology 102, 112–131, (2008).
  • Varnes, D.J., Landslide hazard zonation-a review of principles and practice, 63, UNESCO Press, Paris, (1984).
  • Aleotti, P. and Chowdhury, R.N., Landslide hazard assessments: summary review and new perspectives, Bulletin of Engineering Geology and the Environment, 58, 21-44, (1999).
  • Lima, P., Steger, S., Glade, T., Murillo-Garcia, F.G., Literature review and bibliometric analysis on data-driven assessment of landslide susceptibility, Journal of Mountain Science 19, 6, 1670-1698, (2022).
  • Hasekiogullari, G. D., Ercanoglu, M., A new approach to use AHP in landslide susceptibility mapping: a case study at Yenice (Karabuk, NW Turkey). Natural Hazards 63,1157–1179, (2012).
  • Komac, M., A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in Perialpine Slovenia, Geomorphology, 74, 17-28, (2006).
  • Yalçın, A., GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations, Catena, 72, 1-12, (2008).
  • Ercanoglu, M., Temiz, A., F., Application of logistic regression and fuzzy operators to landslide susceptibility assessment in Azdavay (Kastamonu, Turkey), Environmental Earth Science, 64, 949-964, (2011).
  • Bui, D. T., Pradhan, B., Lofman, O., Revhaug, I., Dick, O. B., Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models, Catena, 96, 28-40, (2012).
  • Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran, National Hazards, 63, 965-996, (2012).
  • Reis, S., Yalcin, A., Atasoy, M., Nisanci, R., Bayrak, T., Erduran, M., Sancar, C., Ekercin, S., Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio and analytical hierarchy methods in Rize province (NE Turkey), Environmental Earth Science, 66, 2063-2073, (2012).
  • Demir, G., Aytekin, M., Akgün, A., İkizler, S. B., Tatar, O., A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood frequency ratio and analytic hierarchy process methods, Natural Hazards, 65, 1481-1506, (2013).
  • Feizizadeh, B., Blaschke, T., GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods fort he Urmia lake basin, Iran, Natural Hazards, 65, 2105-2128, (2013).
  • Akgün, A., Dağ, S., Bulut, F., Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models, Environmental Geology, 54, 1127-1143, (2008).
  • Dağ, S., Bulut F., Coğrafi bilgi sistemleri tabanlı heyelan duyarlılık haritalarının hazırlanmasına bir örnek: Çayeli (Rize, KD Türkiye). Jeoloji Mühendisliği Dergisi, 36(1), 35-62, (2012).
  • Aydoğan, E., Dağ, S., İstatistiksel Yöntemlerle Yukarı Karasu Havzası’nın Kuzeydoğu Bölümünün (Erzurum) Heyelan Duyarlılık Analizi, Turkish Journal of Remote Sensing and GIS, 4(1), 64-82, (2023).
  • Ercanoğlu, M., Bulanık mantık ve istatistiksel yöntemlerle heyelan duyarlılık haritalarının üretilmesi: Batı Karadeniz bölgesi (Kumluca güneyi-Yenice kuzeyi), Doktora Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, (2003).
  • Lee, S., Talib, J. A., Probabilistic landslide susceptibility and factor effect analysis, Environmental Geology, 47, 982–990, (2005)
  • Çevik, E., Topal, T., GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey), Environmental Geology 44, 949–962, (2003).
  • Yalçın, A., GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations, Catena, 72, 1-12, (2008).
  • Nandi, A., Shakoor, A., A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses, Engineering Geology, 110, 11-20, (2009).
  • Yılmaz, I., Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey), Computers&Geoscience, 35, 1125-1138, (2009).
  • Strahler, A. N., Quantitative analysis of watershed geomorphology, Transactions of the American Geophysical Union 38, 913–920, (1957).
  • Gregory, K. J., Walling, D. E., The variation of drainage density within a catchment, Hydrological Sciences Journal, 13, 2, 61-68, (2010).
  • Mandal, B., Mandal, S., Assessment of mountain slope instability in the Lish River basin of Eastern Darjeeling Himalaya using frequency ratio model (FRM), Modeling Earth Systems and Environment, 2, 121, (2016).
  • Sonker, I., Tripathi, J. N., Singh, A. K., Landslide susceptibility zonation using geospatial technique and analytical hierarchy process in Sikkim Himalaya, Quatenary Science Advances, 4, 1, 100039, (2021).
  • Pimiento, E., Shallow landslide susceptibility: modelling and validation, MSc Thesis, Department of Physical Geography and Ecosystem Science, Lund University, Lund, (2010).
  • DeLong, E. R., DeLong, D. M., Clarke-Pearson, D.L., Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach Biometrics, 44,837-845, (1988).
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik Jeolojisi
Bölüm Araştırma Makalesi
Yazarlar

Murat Ercanoğlu 0000-0002-3496-214X

Pınar Avcı 0000-0002-4158-0107

Erken Görünüm Tarihi 14 Temmuz 2024
Yayımlanma Tarihi 15 Temmuz 2024
Gönderilme Tarihi 25 Ocak 2024
Kabul Tarihi 3 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 26 Sayı: 2

Kaynak Göster

APA Ercanoğlu, M., & Avcı, P. (2024). Heyelan duyarlılığı değerlendirmelerinde akarsulara uzaklık parametresinin kullanımına yönelik yeni bir yaklaşım. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2), 594-614. https://doi.org/10.25092/baunfbed.1425508
AMA Ercanoğlu M, Avcı P. Heyelan duyarlılığı değerlendirmelerinde akarsulara uzaklık parametresinin kullanımına yönelik yeni bir yaklaşım. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2024;26(2):594-614. doi:10.25092/baunfbed.1425508
Chicago Ercanoğlu, Murat, ve Pınar Avcı. “Heyelan duyarlılığı değerlendirmelerinde Akarsulara uzaklık Parametresinin kullanımına yönelik Yeni Bir yaklaşım”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, sy. 2 (Temmuz 2024): 594-614. https://doi.org/10.25092/baunfbed.1425508.
EndNote Ercanoğlu M, Avcı P (01 Temmuz 2024) Heyelan duyarlılığı değerlendirmelerinde akarsulara uzaklık parametresinin kullanımına yönelik yeni bir yaklaşım. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 2 594–614.
IEEE M. Ercanoğlu ve P. Avcı, “Heyelan duyarlılığı değerlendirmelerinde akarsulara uzaklık parametresinin kullanımına yönelik yeni bir yaklaşım”, BAUN Fen. Bil. Enst. Dergisi, c. 26, sy. 2, ss. 594–614, 2024, doi: 10.25092/baunfbed.1425508.
ISNAD Ercanoğlu, Murat - Avcı, Pınar. “Heyelan duyarlılığı değerlendirmelerinde Akarsulara uzaklık Parametresinin kullanımına yönelik Yeni Bir yaklaşım”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/2 (Temmuz 2024), 594-614. https://doi.org/10.25092/baunfbed.1425508.
JAMA Ercanoğlu M, Avcı P. Heyelan duyarlılığı değerlendirmelerinde akarsulara uzaklık parametresinin kullanımına yönelik yeni bir yaklaşım. BAUN Fen. Bil. Enst. Dergisi. 2024;26:594–614.
MLA Ercanoğlu, Murat ve Pınar Avcı. “Heyelan duyarlılığı değerlendirmelerinde Akarsulara uzaklık Parametresinin kullanımına yönelik Yeni Bir yaklaşım”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 26, sy. 2, 2024, ss. 594-1, doi:10.25092/baunfbed.1425508.
Vancouver Ercanoğlu M, Avcı P. Heyelan duyarlılığı değerlendirmelerinde akarsulara uzaklık parametresinin kullanımına yönelik yeni bir yaklaşım. BAUN Fen. Bil. Enst. Dergisi. 2024;26(2):594-61.