Derleme
BibTex RIS Kaynak Göster

Çevresel Stres Koşullarına Maruz Kalan Bitkilerde Fotosentez ve Fitohormon Seviyelerindeki Değişiklikler

Yıl 2020, Cilt: 9 Sayı: 2, 295 - 311, 24.12.2020

Öz

Bitkiler yaşamları boyunca çevresel streslere ve bunların kombinasyonlarına maruz kalmaktadırlar. Tüm bitkilerde temel fizyolojik bir süreç olan fotosentez, bu stres faktörlerinden ciddi bir şekilde etkilenmektedir. Çevresel streslerin fotosentez üzerindeki etkileri ya stoma ve mezofil yoluyla CO2’nin sınırlanması ve fotosentetik metabolizmada değişiklikler gibi doğrudan ya da oksidatif stres gibi dolaylı etkilerdir. Fitohormonlar ise hem bitki büyüme ve gelişmesi için gerekli olup hem de abiyotik stres koşullarına karşı tepkilerin düzenlenmesinde önemli bir rol oynamaktadırlar. Bu derlemede, çevresel stres koşullarına maruz kalan bitkilerde fotosentez ve fitohormonların rolü ele alınmıştır.

Kaynakça

  • Afroz, S., Mohammad, F., Hayat, S., Siddiqui, M. H. (2005). Exogenous application of gibberellic acid counteracts the Ill effect of sodium chloride in mustard. Journal of Plant Physiology, 29: 233-236.
  • Agami, R. A., Mohamed, G. F. (2013). Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicology and Environmental Safety, 94: 164-171. DOI: 10.1016/j.ecoenv.2013.04.013.
  • Akram, M. S., Ashraf, M. (2011). Exogenous application of potassium dihydrogen phosphate can alleviate the adverse effects of salt stress on sunflower (Helianthus annuus L.). Journal of Plant Nutrition, 34(7), 1041-1057. DOI: 10.1080/01904167.2011.555585.
  • Arfan, M., Athar, H. R., Ashraf, M. (2007). Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress. Journal of Plant Physiology, 164(6), 685-694. DOI: 10.1016/j.jplph.2006.05.010.
  • Aroca, R., Ruiz‐Lozano, J. M., Zamarreño, Á. M., Paz, J. A., García‐Mina, J. M., Pozo, M. J., López‐Ráez, J. A. (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology, 170(1), 47-55. DOI: 10.1016/j.jplph.2012.08.020.
  • Ashraf, M., Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51: 163-190.
  • Ashraf, M., Karim, F., Rasul, E. (2002). Interactive effects of gibberellic acid (GA3) and salt stress on growth, ion accumulation and photosynthetic capacity of two spring wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Plant Growth Regulation, 36: 49-59.
  • Ashraf, M., Wu, L. (1994). Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences, 13(1), 17-42. DOI: 10.1080/07352689409701906.
  • Balkan Nalçaiyi, B. S. (2018). Ayçiçeği (Helianthus annuus L.) genotiplerinde kuraklığa dayanıklılığın fizyolojik, biyokimyasal ve moleküler düzeyde incelenmesi. (Doktora tezi). Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, 217 s. Ankara.
  • Barthel, M., Cieraad, E., Zakharova, A., Hunt, J. E. (2014). Sudden cold temperature delays plant carbon transport and shifts allocation from growth to respiratory demand. Biogeosciences, 11, 1425-1433. DOI: 10.5194/bg-11-1425-2014.
  • Ben-Asher, J., Garcia, A., Garcia, Y., Hoogenboom, G. (2008). Effect of high temperature on photosynthesis and transpiration of sweet corn (Zea mays L. var. rugosa). Photosynthesis, 46: 595-603.
  • Bücker-Neto, L., Paiva, A. L, S.; Machado, R. D., Arenhart, R. A., Margis-Pinheiro, M. (2017). Interactions between plant hormones and heavy metals responses. Genetics and Molecular Biology, 40 (Suppl. 1), 373-386. DOI: 10.1590/1678-4685-gmb-2016-0087.
  • Cabido, M., Pons, E., Cantero, J. J., Lewis, J. P., Anton, A. (2007). Photosynthetic pathway variation among C 4 grasses along a precipitation gradient in Argentina. J of Biogeography, 35(1), 131-140. DOI: 10.1111/j.1365-2699.2007.01760.x.
  • Chalanika De Silva, H. C., Asaeda, T. (2017). Effects of heat stress on growth, photosynthetic pigments, oxidative damage and competitive capacity of three submerged macrophytes. Journal of Plant Interactions. 12, 228-236 DOI: 10.1080/17429145.2017.1322153.
  • Chandra, R., Kang, H. (2016). Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. Forest Science and Technology, 12(2), 55-61. DOI: 10.1080/21580103.2015.1044024.
  • Coles, J. P., Phillips, A. L., Croker, S.J., García-Lepe, R. Lewis, M. J., Hedden, P. (1999). Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant Journal, 17(5), 547-556. DOI: 10.1046/j.1365-313X.1999.00410.x.
  • Cortleven, A., Nitschke, S., Klaumunzer, M., AbdElgawad, H., Asard, H., Grimm, B., Riefler, M., Schmulling, T. (2014). A novel protective function for cytokinin in the light stress response is mediated by the Arabidopsis Histidine Kinase2 and Arabidopsis Histidine Kinase3 receptors. Plant Physiology, 164: 1470-1483. DOI: 10.1104/pp.113.224667.
  • Cross, R. H., Mckay, S. A. B., G. Mchughen, A., Bonham-Smith, P. C. (2003). Heat-stress effects on reproduction and seed set in Linum usitatissimum L. (flax). Plant. Cell & Environment, 26: 1013-1020. DOI: 10.1046/j.1365-3040.2003.01006.x.
  • El-Tayeb, M. A. (2005). Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regulation, 45: 215-224.
  • Ercoli, L., Mariotti, M., Masoni, A., Arduini, I. (2004). Growth responses of sorghum plants to chilling temperature and duration of exposure. European Journal of Agronomy, 21(1), 93-103. DOI: 10.1016/S1161-0301(03)00093-5.
  • Ergün, N., Öncel, I. (2012). Effects of some HMs and HM hormone interactions on wheat (Triticum aestivum L. cv. Gun 91) seedlings. African Journal of Agricultural Research, 7(10), 1518-1523. DOI: 0.5897/AJAR11.839.
  • Farooq, M., Basra, S. M. A, Wahid, A., Ahmad, N., Saleem, B. A. (2009). Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. Journal of Agronomy and Crop Science, 195(4), 237-246. DOI: 10.1111/j.1439-037X.2009.00365.x.
  • Ferreira, R. G., Tavora, F. J. A. F., Hernandez, F., Felipe, F. (2001). Dry matter partitioning and mineral composition of roots, stems and leaves of guava grown under salt stress conditions. Pesqui. Agropecuaria Bras, 36(1), 79-88. DOI: 10.1590/S0100-204X2001000100010.
  • Ghorbanli, M., Kaveh, S., Sepehr, M. (1999). Effects of cadmium and gibberellin on growth and photosynthesis of Glycine max. Photosynthetica, 37: 627-631.
  • Ghotbi-Ravandi, A. A., Shahbazi, M., Shariati, M., Mulo, P. (2014). Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley (Hordeum vulgare L.) genotypes. Journal of Agronomy and Crop Science, 200(6), 403-415. DOI: doi.org/10.1111/jac.12062.
  • Gururani, M. A., Mohanta, T. K., Bae, H. (2015). Current understanding of the ınterplay between phytohormones and photosynthesis under environmental stress. International Journal of Molecular Sciences, 16(8), 19055-19085. DOI: 10.3390/ijms160819055.
  • Haisel, D., Pospíšilová, J., Synková, H., Schnablová, R., Baťková, P. (2006). Effects of abscisic acid or benzyladenine on pigment contents, chlorophyll fluorescence, and chloroplast ultrastructure during water stress and after rehydration. Photosynthetica, 44: 606-614.
  • Hajihashemi, S., Noedoost, F., Geuns, J. M. C., Djalovic, I., Siddique, K. H. M. (2018). Effect of cold stress on photosynthetic traits, carbohydrates, morphology, and anatomy in nine cultivars of Stevia rebaudiana. Front. Plant Sci. 9: 1430. 1-12, DOI: 10.3389/fpls.2018.01430.
  • Hassanein, A. M. (1999). Alterations in protein and esterase patterns of peanut in response to salinity stress. Biologia Plantarum, 42: 241-248.
  • Havaux, M., Davaud, A. (1994). Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of Photosystem-II activity. Photosynthesis Research, 4: 75-92.
  • Hu, W. H., Yan, X. H., Xiao, Y. A., Zeng, J. J., Qi, H. J., Ogweno, J. O. (2013). 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Scientia Horticulturae, 150: 232-237. DOI: 10.1016/j.scienta.2012.11.012.
  • Ji, W., Koh, J., Li, S., Zhu, N., Dufresne, C.P., Zhao, X., Chen, S., Li, J. (2016). Quantitative proteomics reveals an important role of GsCBRLK in salt stress response of soybean. Plant and Soil, 402: 159-178. DOI: 10.1007/s11104-015-2782-0.
  • Kang, G. Z., Li, G. Z., Liu, G. Q., Xu, W., Peng, X. Q., Wang, C. Y., Zhu, Y. J., Guo, T. C. (2013). Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biol. Plant, 57: 718-724.
  • Khan, M. N., Siddiqui, M. H., Mohammad, F., Naeem, M., Khan, M. M. A. (2010a). Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiologiae Plantarum, 32: 121-132. DOI: 10.1007/s11738-009-0387-z.
  • Khan, N. A., Syeed, S., Masood, A., Nazar, R., Iqbal, N. (2010b). Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. International Journal of Plant Biology, 1(1), 1-8. DOI: doi.org/10.4081/pb.2010.e1.
  • Khavari-Nejad, R. A., Mostofi, Y. (1998). Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica 35: 151-154.
  • Khodary, S. E. A. (2004). Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. International Journal of Agriculture and Biology, 6: 5-8.
  • Kipp, E. (2007). Heat stress effects on growth and development in three ecozypes of varying latitude of Arabidopsis. Applied Ecology and Environmental Research, 6(4), 1-14.
  • Kulshrehtha, S., Mishra, D. P., Gupta, R. K. (1987). Changes in contents of chlorophyll, proteins and lipids in whole chloroplasts and chloroplast membrane fractions at different water potential in drought resistant and sensitive genotypes of wheat. Photosynthetica, 21(1), 65-70.
  • Kwon, O. K., Mekapogu, M., Kim, K. S. (2019). Effect of salinity stress on photosynthesis and related physiological responses in carnation (Dianthus caryophyllus). Horticulture, Environment, and Biotechnology, 60: 831-839.
  • Larkindale, J., Knight, M. R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology, 128(2), 682-695. DOI: 10.1104/pp.010320.
  • Li, J., Cang, Z., Jiao, F., Bai, X., Zhang, D., Zhai, R. (2017). Influence of drought stress on photosynthetic characteristics and protective enzymes of potato at seedling stage. J. Saudi Soc. Agric. Sci, 16(1), 82-88. DOI: 10.1016/j.jssas.2015.03.001.
  • Li, Y-T., Xu, W-W., Ren, B-Z., Zhao, B., Zhang, J., Liu, P. (2020). High temperature reduces photosynthesis in maize leaves by damaging chloroplast ultrastructure and photosystem II. Journal of Agronomy and Crop Science, 206(5), 548-564. DOI: 10.1111/jac.12401.
  • Liu, J., Guo, Y. Y., Bai, Y. W., Camberato, J. J., Xue, J. O., Zhang, R. H. (2018). Effects of drought stress on the photosynthesis in maize. Russian Journal of Plant Physiology, 65: 849-856.
  • Liu, S., Dong, Y., Xu, L., Kong, J. (2014). Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regulator 73: 67-78.
  • Loik, M. E., Redar, S. P., Harte, J. (2000). Photosynthetic responses to a climate-warming manipulation for contrasting meadow species in the Rocky Mountains, Colorado, USA. Functional Ecology, 14(2), 166-175. DOI: 10.1046/j.1365-2435.2000.00411.x.
  • Ma, Q., Yue, L. J., Zhang, J. L., Wu, G. Q., Bao, A. K., Wang, S. M. (2012). Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. Tree Physiolgy, 32(1), 4-13. DOI: 10.1093/treephys/tpr098.
  • Maslenkova, L. T., Zanev, Y., Popova, L. P. (1989). Effect of abscisic-acid on the photosynthetic oxygen evolution in barley chloroplasts. Photosynthesis Research. 21: 45-50.
  • Masood, A., Iqbal, N., Khan, N. A. (2012). Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant, Cell & Environment, 35(3), 524-533. DOI: 10.1111/j.1365-3040.2011.02432.x.
  • Monirifar, H., Barghi, M. (2009). Identification and selection for salt tolerance in alfalfa (Medicago sativa L.) ecotypes via physiological traits. Notulae Scientia Biologicae, 1(1), 63-66. DOI: 10.15835/nsb113498.
  • Morales, F., Ancín, M., Fakhet, D., González-Torralba, J., Gámez, A. L., Seminario, A., Soba, D., Ben Mariem, S., Garriga, M., Aranjuelo, I. (2020). photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield ımprovement. Plants, 9(1), 88. DOI: 10.3390/plants9010088
  • Mostofa, M. G., Li, W., Nguyen, K. H., Fujita, M., Tran, L. P. (2018). Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research. Plant, Cell, Environment. 41(10), 2227-2243. DOI: 10.1111/pce.13364.
  • Moya, J. L., Ros, R., Picazo, I. (1995). Heavy metal-hormone interactions in rice plants: Effects on growth, net photosynthesis, and carbohydrate distribution. Journal of Plant Growth Regulation, 14: 61-67.
  • Murata, N., Takahashi, S., Nishiyama, Y., Allakhverdiev, S. I. (2007). Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(6), 414-421. DOI: 10.1016/j.bbabio.2006.11.019.
  • Mutlu, S., Atıcı, Ö., Nalbantoğlu, B., Mete, E. (2016). Exogenous salicylic acid alleviates cold damage by regulating antioxidative system in two barley (Hordeum vulgare L.) cultivars. Frontiers in Life Science, 9(2), 99-109. DOI: 10.1080/21553769.2015.1115430.
  • Najar, R., Aydi, S., Sassi-Aydi, S., Zarai, A., Abdelly, C. (2019). Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. Plant Biosystems.-An International Journal Dealing with all Aspects of Plant Biology, 153(1), 88-97. DOI: 10.1080/11263504.2018.1461701.
  • Nazar, R., Umar, S., Khan, N.A. (2015). Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signaling & Behavior, 10(3): e1003751. DOI: 10.1080/15592324.2014.1003751.
  • Nishiyama, Y., Yamamoto, H., Allakhverdiev, S. I., Inaba, M., Yokota, A., Murata, N. (2001). Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO Journal, 20(20), 5587-5594. DOI: 10.1093/emboj/20.20.5587.
  • Noreen, Z., Ashraf, M., Akram, N. A. (2010). Salt-induced modulation in some key gas exchange characteristics and ionic relations in pea (Pisum sativum L.) and their use as selection criteria. Crop Pasture Science, 61: 369-378. DOI: 10.1071/CP09255.
  • Ogweno, J. O., Song, X. S., Shi, K., Hu, W. H., Mao, W. H., Zhou, Y. H., Yu, J. Q., Nogués, S. (2008). Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 27: 49-57.
  • Ojeda-PeÂrez, Z .Z., JimeÂnez-Bremont, J. F., Delgado-SaÂnchez, P. (2017). Continuous high and low temperature induced a decrease of photosynthetic activity and changes in the diurnal fluctuations of organic acids in Opuntia streptacantha. PLoS ONE 12(10). DOI: 10.1371/journal.pone.0186540.
  • Okcu, M., Tozlu, E., Kumlay, A., Pehluvan, M. (2009). Ağır metallerin bitkiler üzerinde etkileri. Iğdır Üniversitesi, Alınteri, 17(B), 14-26.
  • Pandey, A., Sharma, M., Pandey, G. K. (2016). Emerging roles of strigolactones in plant responses to stress and development. Front. Plant Sci. 7: 434. DOI: 10.3389/fpls.2016.00434.
  • Pandey, D. M., Goswami, C. L., Kumar, B. (2003). Physiological effects of plant hormones in cotton under drought. Biologia Plantarum, 47: 535-540.
  • Parida, A., Das, A. B., Das, P. (2002). NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. Journal of Plant Biology, 45(1), 28-36.
  • Parry, M. A. J., Andralojc, P. J., Khan, S., Lea, P. J., Keys, A. J. (2002). Rubisco activity: Effects of drought stress. Annals of Botany, 89(7), 833-839. DOI: 10.1093/aob/mcf103.
  • Pirzad, A., Shakiba, M.R., Zehtab-Salmasi, S., Mohammadi, S.A., Darvishzadeh. R., Samadi, A. (2011). Effect of water stress on leaf relative water content, chlorophyll, proline and soluble carbohydrates in Matricaria chamomilla L. Journal of Medicinal Plants Research, 5(12), 2483-2488. DOPI: 10.5897/JMPR.9000503.
  • Porch, T.G., Jahn, M. (2001). Effects of high-temperature stress on microsporogenesis in heat sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant, Cell & Environment, 24(7), 723-731. DOI: 0.1046/j.1365-3040.2001.00716.x.
  • Rao, S. R., Qayyum, A., Razzaq, A., Ahmad, M., Mahmood, I., Sher, A. (2012). Role of foliar application of salicylic acid and L-tryptophan in drought tolerance of maize. Journal of Animal and Plant Sciences, 22(3), 768-772.
  • Ren, C. G., Kong, C. C., Xie, Z. H. (2018). Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC Plant Biology, 18: 74. DOI: 10.1186/s12870-018-1292-7.
  • Rivero, R. M., Gimeno, J., van Deynze, A., Walia, H., Blumwald, E. (2010). Enhanced cytokinin synthesis in tobacco plants expressing PSARK: IPTprevents the degradation of photosynthetic protein complexes during drought. Plant and Cell Physiology, 51(11), 1929-1941. DOI: 10.1093/pcp/pcq143.
  • Rothová, O., Holá, D., Kočová, M., Tůmová, L., Hnilička, F., Hniličková, H., Kamlar, M., Macek, T. (2014). 24-Epibrassinolide and 20-hydroxyecdysone affect photosynthesis differently in maize and spinach. Steroids, 85: 44-57. DOI: 10.1016/j.steroids.2014.04.006.
  • Sabir, P., Ashraf, M., Hussain, M., Jamil, A. (2009). Relationship of photosynthetic pigments and water relations with salt tolerance of proso millet (Panicum miliaceum L.) accessions. Pakistan Journal of Botany, 41(6), 2957-2964
  • Shah, S. H. (2007). Effects of salt stress on mustard as affected by gibberellic acid application. General and Applied Plant Physiology, 33: 97-106.
  • Sharifi, P., Mohammadkhani, N. (2016). Effect of drought stress on photosynthesis factors in wheat genotypes during grain anthesis. Cereal Research Communications, 44(2), 229-239. DOI: 10.1556/0806.43.2015.054.
  • Sharkey, T. D. (2005). Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, Rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell, Environment. 28(3), 269-277. DOI: 10.1111/j.1365-3040.2005.01324.x.
  • Siddique, Z., Jan, S., Imadi, S.R., Gul, A., Ahmad, P. (2016). Drought stress and photosynthesis in plants. (P. Ahmad Ed.). Wiley Online Library. DOI: 10.1002/9781119054450.
  • Song, Y., Chen, Q., Ci, D., Shao, X., Zhang, D. (2014). Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biol. 14: 111.
  • Stepien, P., Johnson, G.N. (2009). Contrasting responses of photosynthesis to salt stress in the glycophyte arabidopsis and the halophyte thellungiella: Role of the plastid terminal oxidase as an alternative electron sink. Plant Physiology, 149: 1154-1165. DOI: 10.1104/pp.108.132407.
  • Takahashi, S., Murata, N. (2008). How do environmental stresses accelerate photoinhibition? Trends in Plant Science, 13(4), 178-182. DOI: 10.1016/j.tplants.2008.01.005
  • Tavakkoli, E., Rengasamy, P., McDonald, G. K. (2010). High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany, 61(15), 4449-4459. DOI: 10.1093/jxb/erq251.
  • Tsonev, T. D., Lazova, G. N., Stoinova, Z. G., Popova, L. P. (1998). A possible role for jasmonic acid in adaptation of barley seedling to salinity stress. Journal of Plant Growth Regulation, 17(3), 153-159.
  • Tuna, A. L., Kaya, C., Dikilitas, M., Higgs, D. (2008). The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany, 62(1), 1-9. DOI: 10.1016/j.envexpbot.2007.06.007.
  • Velitcukova, M., Fedina, I. (1998). Response of photosynthesis of Pisum sativum to salt stress as affected by methyl jasmonate. Photosynthetica, 35: 89-97
  • Walawwe, S. A. (2014). Regulation of Photosynthesis in Plants Under Abiotic Stress. University of Manchester. Faculty of Life Sciences. ProQuest Dissertations Publishing, 306 p. England.
  • Wang, L., Xu, J.Y., Jia, W., Chen, Z., Xu, Z.C. (2020). Chloride salinity in a chloride-sensitive plant: Focusing on photosynthesis, hormone synthesis and transduction in tobacco. Plant Physiology and Biochemistry, 153: 119-130. DOI: 10.1016/j.plaphy.2020.05.021.
  • Wi, S. J., Jang, S. J., Park, K. Y. (2010). Inhibition of biphasic ethylene production enhances tolerance to abiotic stress by reducing the accumulation of reactive oxygen species in Nicotiana tabacum. Molecules and Cells, 30: 37-49.
  • Xu, Y. H., Liu, R., Yan, L., Liu, Z. Q., Jiang, S. C., Shen, Y. Y., Wang, X. F., Zhang, D. P. (2012). Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. Journal of Experimental Botany, 63(3), 1095-1106. DOI: 10.1093/jxb/err315.
  • Yang, Y., Zhang, L., Huang, X., Zhou, Y., Quan, Q., Li, Y., Zhu, X. (2020b). Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata. PLoS ONE 15(3). DOI: 10.1371/journal.pone.0228563.
  • Yang, Z., Li, J. L., Liu, L. N., Xie, Q., Sui, N. (2020a). Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum. Frontiers in Plant Science 15. DOI: 10:1722. 10.3389/fpls.2019.01722.
  • Yu, J. Q., Huang, L. F., Hu, W. H., Zhou, Y. H., Mao, W. H., Ye, S. F., Nogués, S. (2004). A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. Journal of Experimental Botany, 55(399), 1135-1143. DOI: 10.1093/jxb/erh124.
  • Yuan, L., Xu, D. (2001). Stimulation effect of gibberellic acid short-term treatment on leaf photosynthesis related to the increase in Rubisco content in broad bean and soybean. Photosynthesis Research. 68: 39-47.
  • Yüzbaşıoğlu, E., Dalyan, E., Akpınar, I. (2017). Changes in photosynthetic pigments, anthocyanin content and antioxidant enzyme activities of maize (Zea mays L.) seedlings under high temperature stress conditions. Trakya University Journal of Natural Sciences, 18(2), 97-104.
  • Zhang, S., Scheller, H. V. (2004). Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant and Cell Physiology, 45(11), 1595-1602. DOI: 10.1093/pcp/pch180.
  • Zhang, T., Zhang, Z., Li, Y., He, K. (2019a). The effects of saline stress on the growth of two shrub species in the Qaidam Basin of Northwestern China. Sustainability, 11(3), 838. DOI: 10.3390/su11030828.
  • Zhang, Y., Li, Y., Hassan, M.J., Li, Z., Peng, Y. (2020). Indole-3-acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes. BMC Plant Biology, 20(1), 1-12. DOI: 10.1186/s12870-020-02354-y.
  • Zhang,W., Wang, J., Huang, Z., M, L., Xu, K., Wu, J., Fan, Y., Ma, S., Jiang, D. (2019b). Effects of low temperature at booting stage on sucrose metabolism and endogenous hormone contents in winter wheat spikelet. Frontiers in Plant Science, 10: 498. DOI: 10.3389/fpls.2019.00498.
  • Zhu, X. F., Jiang, T., Wang, Z. W., Lei, G. J., Shi, Y. Z., Li, G. X., Zheng, S. J. (2012). Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. Journal of Hazardous Materials, 239-240, 302-307. DOI: 10.1016/j.jhazmat.2012.08.077

Changes in Photosynthesis and Phytohormone Levels in Plants Exposed to Environmental Stress Conditions

Yıl 2020, Cilt: 9 Sayı: 2, 295 - 311, 24.12.2020

Öz

Plants are exposed to environmental stresses and their combinations throughout their lives. Photosynthesis, a basic physiological process in all plants, is severely affected by these stress factors. The effects of environmental stresses on photosynthesis are either direct effects such as limitation of CO2 by stomata and mesophyll and changes in photosynthetic metabolism or indirect effects such as oxidative stress. Phytohormones, on the other hand, are essential both for plant growth and development and play an important role in regulating responses to abiotic stress conditions. In this review, the role of photosynthesis and phytohormones in plants exposed to environmental stress conditions are discussed.

Kaynakça

  • Afroz, S., Mohammad, F., Hayat, S., Siddiqui, M. H. (2005). Exogenous application of gibberellic acid counteracts the Ill effect of sodium chloride in mustard. Journal of Plant Physiology, 29: 233-236.
  • Agami, R. A., Mohamed, G. F. (2013). Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicology and Environmental Safety, 94: 164-171. DOI: 10.1016/j.ecoenv.2013.04.013.
  • Akram, M. S., Ashraf, M. (2011). Exogenous application of potassium dihydrogen phosphate can alleviate the adverse effects of salt stress on sunflower (Helianthus annuus L.). Journal of Plant Nutrition, 34(7), 1041-1057. DOI: 10.1080/01904167.2011.555585.
  • Arfan, M., Athar, H. R., Ashraf, M. (2007). Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress. Journal of Plant Physiology, 164(6), 685-694. DOI: 10.1016/j.jplph.2006.05.010.
  • Aroca, R., Ruiz‐Lozano, J. M., Zamarreño, Á. M., Paz, J. A., García‐Mina, J. M., Pozo, M. J., López‐Ráez, J. A. (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology, 170(1), 47-55. DOI: 10.1016/j.jplph.2012.08.020.
  • Ashraf, M., Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51: 163-190.
  • Ashraf, M., Karim, F., Rasul, E. (2002). Interactive effects of gibberellic acid (GA3) and salt stress on growth, ion accumulation and photosynthetic capacity of two spring wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Plant Growth Regulation, 36: 49-59.
  • Ashraf, M., Wu, L. (1994). Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences, 13(1), 17-42. DOI: 10.1080/07352689409701906.
  • Balkan Nalçaiyi, B. S. (2018). Ayçiçeği (Helianthus annuus L.) genotiplerinde kuraklığa dayanıklılığın fizyolojik, biyokimyasal ve moleküler düzeyde incelenmesi. (Doktora tezi). Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, 217 s. Ankara.
  • Barthel, M., Cieraad, E., Zakharova, A., Hunt, J. E. (2014). Sudden cold temperature delays plant carbon transport and shifts allocation from growth to respiratory demand. Biogeosciences, 11, 1425-1433. DOI: 10.5194/bg-11-1425-2014.
  • Ben-Asher, J., Garcia, A., Garcia, Y., Hoogenboom, G. (2008). Effect of high temperature on photosynthesis and transpiration of sweet corn (Zea mays L. var. rugosa). Photosynthesis, 46: 595-603.
  • Bücker-Neto, L., Paiva, A. L, S.; Machado, R. D., Arenhart, R. A., Margis-Pinheiro, M. (2017). Interactions between plant hormones and heavy metals responses. Genetics and Molecular Biology, 40 (Suppl. 1), 373-386. DOI: 10.1590/1678-4685-gmb-2016-0087.
  • Cabido, M., Pons, E., Cantero, J. J., Lewis, J. P., Anton, A. (2007). Photosynthetic pathway variation among C 4 grasses along a precipitation gradient in Argentina. J of Biogeography, 35(1), 131-140. DOI: 10.1111/j.1365-2699.2007.01760.x.
  • Chalanika De Silva, H. C., Asaeda, T. (2017). Effects of heat stress on growth, photosynthetic pigments, oxidative damage and competitive capacity of three submerged macrophytes. Journal of Plant Interactions. 12, 228-236 DOI: 10.1080/17429145.2017.1322153.
  • Chandra, R., Kang, H. (2016). Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. Forest Science and Technology, 12(2), 55-61. DOI: 10.1080/21580103.2015.1044024.
  • Coles, J. P., Phillips, A. L., Croker, S.J., García-Lepe, R. Lewis, M. J., Hedden, P. (1999). Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant Journal, 17(5), 547-556. DOI: 10.1046/j.1365-313X.1999.00410.x.
  • Cortleven, A., Nitschke, S., Klaumunzer, M., AbdElgawad, H., Asard, H., Grimm, B., Riefler, M., Schmulling, T. (2014). A novel protective function for cytokinin in the light stress response is mediated by the Arabidopsis Histidine Kinase2 and Arabidopsis Histidine Kinase3 receptors. Plant Physiology, 164: 1470-1483. DOI: 10.1104/pp.113.224667.
  • Cross, R. H., Mckay, S. A. B., G. Mchughen, A., Bonham-Smith, P. C. (2003). Heat-stress effects on reproduction and seed set in Linum usitatissimum L. (flax). Plant. Cell & Environment, 26: 1013-1020. DOI: 10.1046/j.1365-3040.2003.01006.x.
  • El-Tayeb, M. A. (2005). Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regulation, 45: 215-224.
  • Ercoli, L., Mariotti, M., Masoni, A., Arduini, I. (2004). Growth responses of sorghum plants to chilling temperature and duration of exposure. European Journal of Agronomy, 21(1), 93-103. DOI: 10.1016/S1161-0301(03)00093-5.
  • Ergün, N., Öncel, I. (2012). Effects of some HMs and HM hormone interactions on wheat (Triticum aestivum L. cv. Gun 91) seedlings. African Journal of Agricultural Research, 7(10), 1518-1523. DOI: 0.5897/AJAR11.839.
  • Farooq, M., Basra, S. M. A, Wahid, A., Ahmad, N., Saleem, B. A. (2009). Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. Journal of Agronomy and Crop Science, 195(4), 237-246. DOI: 10.1111/j.1439-037X.2009.00365.x.
  • Ferreira, R. G., Tavora, F. J. A. F., Hernandez, F., Felipe, F. (2001). Dry matter partitioning and mineral composition of roots, stems and leaves of guava grown under salt stress conditions. Pesqui. Agropecuaria Bras, 36(1), 79-88. DOI: 10.1590/S0100-204X2001000100010.
  • Ghorbanli, M., Kaveh, S., Sepehr, M. (1999). Effects of cadmium and gibberellin on growth and photosynthesis of Glycine max. Photosynthetica, 37: 627-631.
  • Ghotbi-Ravandi, A. A., Shahbazi, M., Shariati, M., Mulo, P. (2014). Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley (Hordeum vulgare L.) genotypes. Journal of Agronomy and Crop Science, 200(6), 403-415. DOI: doi.org/10.1111/jac.12062.
  • Gururani, M. A., Mohanta, T. K., Bae, H. (2015). Current understanding of the ınterplay between phytohormones and photosynthesis under environmental stress. International Journal of Molecular Sciences, 16(8), 19055-19085. DOI: 10.3390/ijms160819055.
  • Haisel, D., Pospíšilová, J., Synková, H., Schnablová, R., Baťková, P. (2006). Effects of abscisic acid or benzyladenine on pigment contents, chlorophyll fluorescence, and chloroplast ultrastructure during water stress and after rehydration. Photosynthetica, 44: 606-614.
  • Hajihashemi, S., Noedoost, F., Geuns, J. M. C., Djalovic, I., Siddique, K. H. M. (2018). Effect of cold stress on photosynthetic traits, carbohydrates, morphology, and anatomy in nine cultivars of Stevia rebaudiana. Front. Plant Sci. 9: 1430. 1-12, DOI: 10.3389/fpls.2018.01430.
  • Hassanein, A. M. (1999). Alterations in protein and esterase patterns of peanut in response to salinity stress. Biologia Plantarum, 42: 241-248.
  • Havaux, M., Davaud, A. (1994). Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of Photosystem-II activity. Photosynthesis Research, 4: 75-92.
  • Hu, W. H., Yan, X. H., Xiao, Y. A., Zeng, J. J., Qi, H. J., Ogweno, J. O. (2013). 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Scientia Horticulturae, 150: 232-237. DOI: 10.1016/j.scienta.2012.11.012.
  • Ji, W., Koh, J., Li, S., Zhu, N., Dufresne, C.P., Zhao, X., Chen, S., Li, J. (2016). Quantitative proteomics reveals an important role of GsCBRLK in salt stress response of soybean. Plant and Soil, 402: 159-178. DOI: 10.1007/s11104-015-2782-0.
  • Kang, G. Z., Li, G. Z., Liu, G. Q., Xu, W., Peng, X. Q., Wang, C. Y., Zhu, Y. J., Guo, T. C. (2013). Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biol. Plant, 57: 718-724.
  • Khan, M. N., Siddiqui, M. H., Mohammad, F., Naeem, M., Khan, M. M. A. (2010a). Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiologiae Plantarum, 32: 121-132. DOI: 10.1007/s11738-009-0387-z.
  • Khan, N. A., Syeed, S., Masood, A., Nazar, R., Iqbal, N. (2010b). Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. International Journal of Plant Biology, 1(1), 1-8. DOI: doi.org/10.4081/pb.2010.e1.
  • Khavari-Nejad, R. A., Mostofi, Y. (1998). Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica 35: 151-154.
  • Khodary, S. E. A. (2004). Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. International Journal of Agriculture and Biology, 6: 5-8.
  • Kipp, E. (2007). Heat stress effects on growth and development in three ecozypes of varying latitude of Arabidopsis. Applied Ecology and Environmental Research, 6(4), 1-14.
  • Kulshrehtha, S., Mishra, D. P., Gupta, R. K. (1987). Changes in contents of chlorophyll, proteins and lipids in whole chloroplasts and chloroplast membrane fractions at different water potential in drought resistant and sensitive genotypes of wheat. Photosynthetica, 21(1), 65-70.
  • Kwon, O. K., Mekapogu, M., Kim, K. S. (2019). Effect of salinity stress on photosynthesis and related physiological responses in carnation (Dianthus caryophyllus). Horticulture, Environment, and Biotechnology, 60: 831-839.
  • Larkindale, J., Knight, M. R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology, 128(2), 682-695. DOI: 10.1104/pp.010320.
  • Li, J., Cang, Z., Jiao, F., Bai, X., Zhang, D., Zhai, R. (2017). Influence of drought stress on photosynthetic characteristics and protective enzymes of potato at seedling stage. J. Saudi Soc. Agric. Sci, 16(1), 82-88. DOI: 10.1016/j.jssas.2015.03.001.
  • Li, Y-T., Xu, W-W., Ren, B-Z., Zhao, B., Zhang, J., Liu, P. (2020). High temperature reduces photosynthesis in maize leaves by damaging chloroplast ultrastructure and photosystem II. Journal of Agronomy and Crop Science, 206(5), 548-564. DOI: 10.1111/jac.12401.
  • Liu, J., Guo, Y. Y., Bai, Y. W., Camberato, J. J., Xue, J. O., Zhang, R. H. (2018). Effects of drought stress on the photosynthesis in maize. Russian Journal of Plant Physiology, 65: 849-856.
  • Liu, S., Dong, Y., Xu, L., Kong, J. (2014). Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regulator 73: 67-78.
  • Loik, M. E., Redar, S. P., Harte, J. (2000). Photosynthetic responses to a climate-warming manipulation for contrasting meadow species in the Rocky Mountains, Colorado, USA. Functional Ecology, 14(2), 166-175. DOI: 10.1046/j.1365-2435.2000.00411.x.
  • Ma, Q., Yue, L. J., Zhang, J. L., Wu, G. Q., Bao, A. K., Wang, S. M. (2012). Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. Tree Physiolgy, 32(1), 4-13. DOI: 10.1093/treephys/tpr098.
  • Maslenkova, L. T., Zanev, Y., Popova, L. P. (1989). Effect of abscisic-acid on the photosynthetic oxygen evolution in barley chloroplasts. Photosynthesis Research. 21: 45-50.
  • Masood, A., Iqbal, N., Khan, N. A. (2012). Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant, Cell & Environment, 35(3), 524-533. DOI: 10.1111/j.1365-3040.2011.02432.x.
  • Monirifar, H., Barghi, M. (2009). Identification and selection for salt tolerance in alfalfa (Medicago sativa L.) ecotypes via physiological traits. Notulae Scientia Biologicae, 1(1), 63-66. DOI: 10.15835/nsb113498.
  • Morales, F., Ancín, M., Fakhet, D., González-Torralba, J., Gámez, A. L., Seminario, A., Soba, D., Ben Mariem, S., Garriga, M., Aranjuelo, I. (2020). photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield ımprovement. Plants, 9(1), 88. DOI: 10.3390/plants9010088
  • Mostofa, M. G., Li, W., Nguyen, K. H., Fujita, M., Tran, L. P. (2018). Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research. Plant, Cell, Environment. 41(10), 2227-2243. DOI: 10.1111/pce.13364.
  • Moya, J. L., Ros, R., Picazo, I. (1995). Heavy metal-hormone interactions in rice plants: Effects on growth, net photosynthesis, and carbohydrate distribution. Journal of Plant Growth Regulation, 14: 61-67.
  • Murata, N., Takahashi, S., Nishiyama, Y., Allakhverdiev, S. I. (2007). Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(6), 414-421. DOI: 10.1016/j.bbabio.2006.11.019.
  • Mutlu, S., Atıcı, Ö., Nalbantoğlu, B., Mete, E. (2016). Exogenous salicylic acid alleviates cold damage by regulating antioxidative system in two barley (Hordeum vulgare L.) cultivars. Frontiers in Life Science, 9(2), 99-109. DOI: 10.1080/21553769.2015.1115430.
  • Najar, R., Aydi, S., Sassi-Aydi, S., Zarai, A., Abdelly, C. (2019). Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. Plant Biosystems.-An International Journal Dealing with all Aspects of Plant Biology, 153(1), 88-97. DOI: 10.1080/11263504.2018.1461701.
  • Nazar, R., Umar, S., Khan, N.A. (2015). Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signaling & Behavior, 10(3): e1003751. DOI: 10.1080/15592324.2014.1003751.
  • Nishiyama, Y., Yamamoto, H., Allakhverdiev, S. I., Inaba, M., Yokota, A., Murata, N. (2001). Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO Journal, 20(20), 5587-5594. DOI: 10.1093/emboj/20.20.5587.
  • Noreen, Z., Ashraf, M., Akram, N. A. (2010). Salt-induced modulation in some key gas exchange characteristics and ionic relations in pea (Pisum sativum L.) and their use as selection criteria. Crop Pasture Science, 61: 369-378. DOI: 10.1071/CP09255.
  • Ogweno, J. O., Song, X. S., Shi, K., Hu, W. H., Mao, W. H., Zhou, Y. H., Yu, J. Q., Nogués, S. (2008). Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 27: 49-57.
  • Ojeda-PeÂrez, Z .Z., JimeÂnez-Bremont, J. F., Delgado-SaÂnchez, P. (2017). Continuous high and low temperature induced a decrease of photosynthetic activity and changes in the diurnal fluctuations of organic acids in Opuntia streptacantha. PLoS ONE 12(10). DOI: 10.1371/journal.pone.0186540.
  • Okcu, M., Tozlu, E., Kumlay, A., Pehluvan, M. (2009). Ağır metallerin bitkiler üzerinde etkileri. Iğdır Üniversitesi, Alınteri, 17(B), 14-26.
  • Pandey, A., Sharma, M., Pandey, G. K. (2016). Emerging roles of strigolactones in plant responses to stress and development. Front. Plant Sci. 7: 434. DOI: 10.3389/fpls.2016.00434.
  • Pandey, D. M., Goswami, C. L., Kumar, B. (2003). Physiological effects of plant hormones in cotton under drought. Biologia Plantarum, 47: 535-540.
  • Parida, A., Das, A. B., Das, P. (2002). NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. Journal of Plant Biology, 45(1), 28-36.
  • Parry, M. A. J., Andralojc, P. J., Khan, S., Lea, P. J., Keys, A. J. (2002). Rubisco activity: Effects of drought stress. Annals of Botany, 89(7), 833-839. DOI: 10.1093/aob/mcf103.
  • Pirzad, A., Shakiba, M.R., Zehtab-Salmasi, S., Mohammadi, S.A., Darvishzadeh. R., Samadi, A. (2011). Effect of water stress on leaf relative water content, chlorophyll, proline and soluble carbohydrates in Matricaria chamomilla L. Journal of Medicinal Plants Research, 5(12), 2483-2488. DOPI: 10.5897/JMPR.9000503.
  • Porch, T.G., Jahn, M. (2001). Effects of high-temperature stress on microsporogenesis in heat sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant, Cell & Environment, 24(7), 723-731. DOI: 0.1046/j.1365-3040.2001.00716.x.
  • Rao, S. R., Qayyum, A., Razzaq, A., Ahmad, M., Mahmood, I., Sher, A. (2012). Role of foliar application of salicylic acid and L-tryptophan in drought tolerance of maize. Journal of Animal and Plant Sciences, 22(3), 768-772.
  • Ren, C. G., Kong, C. C., Xie, Z. H. (2018). Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC Plant Biology, 18: 74. DOI: 10.1186/s12870-018-1292-7.
  • Rivero, R. M., Gimeno, J., van Deynze, A., Walia, H., Blumwald, E. (2010). Enhanced cytokinin synthesis in tobacco plants expressing PSARK: IPTprevents the degradation of photosynthetic protein complexes during drought. Plant and Cell Physiology, 51(11), 1929-1941. DOI: 10.1093/pcp/pcq143.
  • Rothová, O., Holá, D., Kočová, M., Tůmová, L., Hnilička, F., Hniličková, H., Kamlar, M., Macek, T. (2014). 24-Epibrassinolide and 20-hydroxyecdysone affect photosynthesis differently in maize and spinach. Steroids, 85: 44-57. DOI: 10.1016/j.steroids.2014.04.006.
  • Sabir, P., Ashraf, M., Hussain, M., Jamil, A. (2009). Relationship of photosynthetic pigments and water relations with salt tolerance of proso millet (Panicum miliaceum L.) accessions. Pakistan Journal of Botany, 41(6), 2957-2964
  • Shah, S. H. (2007). Effects of salt stress on mustard as affected by gibberellic acid application. General and Applied Plant Physiology, 33: 97-106.
  • Sharifi, P., Mohammadkhani, N. (2016). Effect of drought stress on photosynthesis factors in wheat genotypes during grain anthesis. Cereal Research Communications, 44(2), 229-239. DOI: 10.1556/0806.43.2015.054.
  • Sharkey, T. D. (2005). Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, Rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell, Environment. 28(3), 269-277. DOI: 10.1111/j.1365-3040.2005.01324.x.
  • Siddique, Z., Jan, S., Imadi, S.R., Gul, A., Ahmad, P. (2016). Drought stress and photosynthesis in plants. (P. Ahmad Ed.). Wiley Online Library. DOI: 10.1002/9781119054450.
  • Song, Y., Chen, Q., Ci, D., Shao, X., Zhang, D. (2014). Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biol. 14: 111.
  • Stepien, P., Johnson, G.N. (2009). Contrasting responses of photosynthesis to salt stress in the glycophyte arabidopsis and the halophyte thellungiella: Role of the plastid terminal oxidase as an alternative electron sink. Plant Physiology, 149: 1154-1165. DOI: 10.1104/pp.108.132407.
  • Takahashi, S., Murata, N. (2008). How do environmental stresses accelerate photoinhibition? Trends in Plant Science, 13(4), 178-182. DOI: 10.1016/j.tplants.2008.01.005
  • Tavakkoli, E., Rengasamy, P., McDonald, G. K. (2010). High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany, 61(15), 4449-4459. DOI: 10.1093/jxb/erq251.
  • Tsonev, T. D., Lazova, G. N., Stoinova, Z. G., Popova, L. P. (1998). A possible role for jasmonic acid in adaptation of barley seedling to salinity stress. Journal of Plant Growth Regulation, 17(3), 153-159.
  • Tuna, A. L., Kaya, C., Dikilitas, M., Higgs, D. (2008). The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany, 62(1), 1-9. DOI: 10.1016/j.envexpbot.2007.06.007.
  • Velitcukova, M., Fedina, I. (1998). Response of photosynthesis of Pisum sativum to salt stress as affected by methyl jasmonate. Photosynthetica, 35: 89-97
  • Walawwe, S. A. (2014). Regulation of Photosynthesis in Plants Under Abiotic Stress. University of Manchester. Faculty of Life Sciences. ProQuest Dissertations Publishing, 306 p. England.
  • Wang, L., Xu, J.Y., Jia, W., Chen, Z., Xu, Z.C. (2020). Chloride salinity in a chloride-sensitive plant: Focusing on photosynthesis, hormone synthesis and transduction in tobacco. Plant Physiology and Biochemistry, 153: 119-130. DOI: 10.1016/j.plaphy.2020.05.021.
  • Wi, S. J., Jang, S. J., Park, K. Y. (2010). Inhibition of biphasic ethylene production enhances tolerance to abiotic stress by reducing the accumulation of reactive oxygen species in Nicotiana tabacum. Molecules and Cells, 30: 37-49.
  • Xu, Y. H., Liu, R., Yan, L., Liu, Z. Q., Jiang, S. C., Shen, Y. Y., Wang, X. F., Zhang, D. P. (2012). Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. Journal of Experimental Botany, 63(3), 1095-1106. DOI: 10.1093/jxb/err315.
  • Yang, Y., Zhang, L., Huang, X., Zhou, Y., Quan, Q., Li, Y., Zhu, X. (2020b). Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata. PLoS ONE 15(3). DOI: 10.1371/journal.pone.0228563.
  • Yang, Z., Li, J. L., Liu, L. N., Xie, Q., Sui, N. (2020a). Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum. Frontiers in Plant Science 15. DOI: 10:1722. 10.3389/fpls.2019.01722.
  • Yu, J. Q., Huang, L. F., Hu, W. H., Zhou, Y. H., Mao, W. H., Ye, S. F., Nogués, S. (2004). A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. Journal of Experimental Botany, 55(399), 1135-1143. DOI: 10.1093/jxb/erh124.
  • Yuan, L., Xu, D. (2001). Stimulation effect of gibberellic acid short-term treatment on leaf photosynthesis related to the increase in Rubisco content in broad bean and soybean. Photosynthesis Research. 68: 39-47.
  • Yüzbaşıoğlu, E., Dalyan, E., Akpınar, I. (2017). Changes in photosynthetic pigments, anthocyanin content and antioxidant enzyme activities of maize (Zea mays L.) seedlings under high temperature stress conditions. Trakya University Journal of Natural Sciences, 18(2), 97-104.
  • Zhang, S., Scheller, H. V. (2004). Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant and Cell Physiology, 45(11), 1595-1602. DOI: 10.1093/pcp/pch180.
  • Zhang, T., Zhang, Z., Li, Y., He, K. (2019a). The effects of saline stress on the growth of two shrub species in the Qaidam Basin of Northwestern China. Sustainability, 11(3), 838. DOI: 10.3390/su11030828.
  • Zhang, Y., Li, Y., Hassan, M.J., Li, Z., Peng, Y. (2020). Indole-3-acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes. BMC Plant Biology, 20(1), 1-12. DOI: 10.1186/s12870-020-02354-y.
  • Zhang,W., Wang, J., Huang, Z., M, L., Xu, K., Wu, J., Fan, Y., Ma, S., Jiang, D. (2019b). Effects of low temperature at booting stage on sucrose metabolism and endogenous hormone contents in winter wheat spikelet. Frontiers in Plant Science, 10: 498. DOI: 10.3389/fpls.2019.00498.
  • Zhu, X. F., Jiang, T., Wang, Z. W., Lei, G. J., Shi, Y. Z., Li, G. X., Zheng, S. J. (2012). Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. Journal of Hazardous Materials, 239-240, 302-307. DOI: 10.1016/j.jhazmat.2012.08.077
Toplam 98 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm Derleme
Yazarlar

İlkay Yavaş Bu kişi benim 0000-0002-6863-9631

Emre İlker Bu kişi benim 0000-0002-4870-3907

Yayımlanma Tarihi 24 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 9 Sayı: 2

Kaynak Göster

APA Yavaş, İ., & İlker, E. (2020). Çevresel Stres Koşullarına Maruz Kalan Bitkilerde Fotosentez ve Fitohormon Seviyelerindeki Değişiklikler. Bahri Dağdaş Bitkisel Araştırma Dergisi, 9(2), 295-311.