Derleme
BibTex RIS Kaynak Göster

Optimum Şartlarda Tanelik Mısır Üretiminde Radyasyon Verilerine Dayalı Ulaşılabilecek Maksimum Ürün Miktarı Belirleme: Konya Örneği

Yıl 2022, Cilt: 11 Sayı: 2, 201 - 211, 28.12.2022

Öz

Tanelik mısır üretiminde yeni geliştirilen hibrit çeşitlerin genetik verim potansiyelleri 4000 kg da-1 olarak kabul edilmektedir. Ülkemizin tanelik mısır verimi ortalaması ise 941 kg da-1 dır.
Bitkisel üretimde genetik verim potansiyeline yakın ürün alabilmek için ulaşılabilecek maksimum ürün (hedef) miktarının doğru belirlenmesi gerekmektedir. Hedef ürün miktarını vejetasyon süresince yakalanan toplam fotosentetik aktif ışık (IPAR) miktarı, yakalanan ışığın kimyasal enerjiye (kuru maddeye) dönüştürülme etkinliği (RUE) ve hasat indeksi değerleri (HI) belirlemektedir. Fotosentetik aktif radyasyon (PAR) miktarını coğrafi konum, zaman, bağıl nem, basınç, optikal derinlik ve aerosol konsantrasyonu gibi atmosferik koşullar etkilemektedir. RUE ve HI değerleri yetiştirilen çeşitlerin kanopi yapısı, yaprak alanı indeksi, hasat indeksi, erkenci, geçci oluşu gibi genetik özellikleri, PAR şiddeti, sıcaklık, nem, yağış, toprak koşulları gibi iklim ve çevre değerleri, bitki sıklıkları, sulama, gübreleme, hastalık ve zararlılarla mücadele gibi yetiştirme uygulamaları ile hesaplamada yakalanan veya absorbe edilen toplam ışık değerlerinin kullanımına göre farklılık göstermektedir. Teorik olarak stres koşullarının olmadığı optimum yetiştirme koşullarında mısır bitkisi için ulaşılabilecek maksimum potansiyel RUE değerleri 5.5 g MJ-1 olarak belirtilmektedir. Mısır için 0.5 HI değeri ortalama olarak kabul edilmektedir. Radyasyon verilerine göre Konya ilinde tanelik mısır üretiminde teorik olarak ulaşılabilecek maksimum verim 2822 kg da-1 olarak hesap edilmiştir. Hesaplanan bu verim miktarına ulaşabilmek için bitki tarafından topraktan kaldırılacak besin elementi miktarları doğru olarak belirlenmeli ve bu miktarlardan toprakta alınabilir formda bulunan kısım düşüldükten sonra kalan miktar, günlük bitki gelişimi takip edilerek doğru zamanda ve doğru miktarda sulama suyu ile birlikte verilmelidir.

Kaynakça

  • Andrade, F.H., Uhart, S.A., Agruissain, G.G., Ruiz, R.A. (1992). Radiation use efficiency of maize grown in a cool area. Field Crops Res., 28: 345–354.
  • Anonim, 2012. Konya’da yenilenebilir enerji kaynakları malzeme üretilebilirlik araştırması. http://www.konyadayatirim.gov.tr/images/dosya/Jeotermal%20Enerji%20%20Konya%E2%80%99da%20Yenilenebilir%20Enerji%20Kaynaklar%C4%B1%20Malzeme%20%C3%9Cretebilirlik.pdf
  • Araus, J.L., Tapia, L., Alegre, L., Casadesus, J., Bort, J. (2001). Recent Tools for the Screening of Physiological Traits Determining Yield. In M.P. Reynolds, J.I. Ortiz-Monasterio and A. McNab, eds. Application of Physiology in Wheat Breeding. Mexico, CIMMYT.
  • Araus, J.L., Serret, M.D., Edmeades, G.O. (2012) Phenotyping maize for adaptation to drought. Front. Physiol., 3: 305.
  • Asar, M., Yalçın, S., Yücel, G., Nadaroğlu, Y., Erciyas, H. (2007). Zirai Meteoroloji. Çevre ve Orman Bakanlığı, Devlet Meteoroloji İşleri Genel Müdürlüğü Yayınları.
  • Beadle, C.L. (1985). Plant Growth Analysis. Techniques in Bioproductivity and Photosynthesis. Edit by J. Coombs, D.O. Hall, S.P. Kong and J.M.O. Scurlock. Chapter 2, p. 20–25.
  • Bonelli, L.E., Andrade, F.H. (2020). Maize radiation use-efficiency response to optimally distributed foliar nitrogen-content depends on canopy leaf-area index. Field Crops Research, 247: 1-8.
  • Bonelli, L.E., Cerudo, A., Pico, L.B.O., Di Matteo, J.A., Monzon, J.P., Rizzalli, R.H., Andrade, F.H. (2020). Does the photo-thermal environment limit post-flowering maize growth? Field Crops Research, 252: 1-10.
  • Dalchau, N., Hubbard, K.E., Robertson, F.C., Hotta, C.T., Briggs, H.M., Stan, G.B., Gonçalves, J.M., Webb, A.A. (2010). Correct biological timing in arabidopsis requires multiple light-signaling pathways, proceedings. National Academy of Sciences, USA, 107 (29): 13171-13176.
  • Deo, R.C., Downs, N.J., Adamowski, J.F., Parisi, A.V. (2019). Adaptive neuro-fuzzy inference system integrated with solar zenith angle for forecasting sub-tropical photosynthetically active radiation. Food Energy Secur, 145-151.
  • Djaman, K., Irmak, S., Rathje, W., Martin, R., Derrel, L. Eisenhauer, D.E. (2013). Maize evapotranspiration, yield production functions, biomass, grain yield, harvest index, and yield response factors under full and limited irrigation. Biological Systems Engineering, Papers and Publications, 407.
  • Drouet, J.L., Kiniry, J.R. (2008). Does spatial arrangement of 3D plants affect light transmission and extinction coefficient within maize crops?. Field Crops Research, 107: 62–69. Earl, H.J., Davis, R.F. (2003) Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron. J., 95: 688–696.
  • Edwards, J.T., Purcell, L.C., Vories, E.D. (2005). Light interception and yield potential of short-season maize (Zea mays L.) hybrids in the Midsouth. Agron. J., 97: 225-234.
  • Gallagher, J. N., Biscoe, P.V. (1978). Radiation absorption, growth and yield of cereals. J. Agric. Sci., 91: 47-60.
  • Gallo, K.P., Craig, S.T., Daughtry, C.S.T., Weigand, C.L. (1993). Errors in measuring absorbed radiation and computing crop radiation use efficiency. Agron. J., 85: 1222–1228.
  • Garcia-Rodriguez, A., Garcia-Rodriguez, S., Diez-Mediavilla, M., Tristan, C.A. (2020). Photosynthetic active radiation, Solar Irradiance and the CIE Standard Sky Classification Appl. Sci., 10: 8007.
  • Gou, F., Van Ittersum, M.K., Simon, E., Leffelaar, P.A., Van der Putten, Peter, E.L., Zhang, L., Van der Werf, W. (2017). Intercropping wheat and maize increases total radiation interception and wheat RUE but lowers maize RUE. Eur. J. Agron., 84: 125-139.
  • Greenup, A., Peacock, W.J., Dennis, E.S., Trevaskis, B. (2009). The molecular biology of seasonal flowering-responses in arabidopsis and the cereals, Annals of Botany, 103 (8): 1165-72.
  • Guiducci, M., Antognoni, A., Benincasa, P. (1992). Effect of water availability on leaf movement, light interception and light utilisation efficiency in several field crops. Riista di Agronomia, 27: 392-397.
  • Hao, B., Xue, Q., Marek, T.H., Jessup, K.E., Hou, X., Xu, W., Bynum, E.D., Bean, B.W. (2016). Radiation-use efficiency, biomass production, and grain yield in two maize hybrids differing in drought tolerance. J. Agro Crop Sci., 269–280.
  • Hossain, M.M., Rumi, M.S., Nahar, B.S., Batan, M.A. (2014). Radiation use efficiency in different row orientation of maize (Zea mays L.). J. Environ. Sci. & Natural Resources, 7 (1): 41-46.
  • Hunt, R. (1982). Plant growth curves: The functional approach to plant growth analysis. Edward Arnold Limited, London. 248 pp.
  • Ion V., Georgeta, D., Marin, D., Georgeta, T., Ioan, N., Alecu, A., Gheorghe, B., Daniel, S. (2015). Harvest index at maize in different growing conditions. Romanian Biotechnological Letters, 20 (6): 15-20.
  • Ismail, A.M.A. (1993). A Critical analysis of harvest index. Qatar Univ. Sci. J., 13(2): 253- 263.
  • Kanton, R.A.L., Dennett, M.D. (2000). Radiation capture and use as affected by morphologically contrasting maize/pea in sole and intercropping. West African Journal of Applied Ecology, 13: 1-8.
  • Karaşahin, M. (2021). Sürdürülebilir ve Hassas Tanelik Mısır Üretimi. Nobel Bilimsel Eserler, Ankara. https://www.nobelyayin.com/surdurulebilir-ve-hassas-tanelik-misir-uretimi_16865.html
  • Khan, S., Khan, A., Jalal, F., Khan, M., Khan, H. (2017). Dry matter partitioning and harvest index of maize crop as influenced by integration of sheep manure and urea fertilizer. Adv. Crop Sci. Tech., 5: 276.
  • Kiniry, J.R., Jones, C.A., Blanchet, R., O’ Toole, J.C., Cabelguenne, M., Spanel, D.A. (1989). Radiation use efficiency in biomass accumulation prior to grain filling in five grain crop species. Field Crops Research, 20: 51-64.
  • Kopsell, D.A., Sams, C.E., Morrow, R.C. (2015). Blue wave lengths from led lighting increase nutritionally important metabolites in specialty crops. Hortscience, 50 (9): 1285-1288.
  • Kukal, M.S., Irmak, S. (2020). Light interactions, use and efficiency in row crop canopies under optimal growth conditions. Agricultural and Forest Meteorology, 284: 107-887.
  • Kuşçu, H., Demir, A.O. (2012). Responses of maize to full and limited ırrigation at different plant growth stages U. Ü. Ziraat Fakültesi Dergisi, 26 (2): 15-27.
  • Lindquist, J.L., Arkebauer, T.J., Walters, D.T., Cassman, K.G., Dobermann, A. (2005). Maize radiation use efficiency under optimal growth conditions. Agron. J. 97: 70-72. https://doi.org/10.2134/agronj2005.0072.
  • Liu, X., Rahman, T., Yang, F., Song, C., Yong, T., Liu, J. (2017). PAR interception and utilization in different maize and soybean intercropping patterns. PLoS ONE, 12 (1): 169218.
  • Loomis, R.S., Amthor, J.S. (1999). Yield potential, plant assimilatory capacity, and metabolic efficiencies. Crop Sci. 39: 1584-1596.
  • Lucas, E. (1981). The growth of two maize varieties in farmers, plots located at two contiguous ecological zones in Nigeria. J. Agric. Sci. Camb., 97: 125-134.
  • Maddonni, G.A., Otegui, M.E., Cirilo, A.G. (2001). Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Research, 71: 183-193.
  • Mahesh, N., Rani, P.L., Sreenivas, G., Madhavi, A. (2015). Resource use efficiency of kharif maize under varied plant densities and nitrogen levels in Telangana State, India Int. J. Curr. Microbiol. App. Sci., 4 (7): 632-639.
  • Massa, G.D., Kim, H.H., Wheeler, R.M., Mitchell, C.A. (2008). Plant productivity in response to led lighting. HortScience, 43 (7): 1951-1956.
  • Massignam, A.M., Chapman, S.C., Hammer, G.L., Fukai, S. (2009). Physiological determinants of maize and sunflower grain yield as affected by nitrogen supply. Field Crops Res. 113: 256-267.
  • Maxwell, K., Johnson, G.N. (2000). Chlorophyll fluorescence a practical guide. Journal of Experimental Botany, 51 (345): 659-668.
  • Monteith, J.L. (1972). Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 747-766.
  • Morales, F., Maria ,A., Dorra F., Gonzalez-Torralba, J., Angie, L. Gamez, A.S., David, S., Sinda, B.M., Miguel, G., Iker, A. (2020). Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants, 9: 88.
  • Muchow, R.C. (1994). Effect of nitrogen on yield determination in irrigated maize in tropical and subtropical environments. Field Crops Res. 38: 1-13.
  • Otegui, M.E., Nicolini, M.G., Ruiz, R.A., Dobbs, P.A. (1995). Sowing date effects on grain yield components for different maize genotypes. Agron. J., 87: 29-33.
  • Özcan, M. (2020). Ekoloji Ders Notu. https://avys.omu.edu.tr/storage/app/public/muozcan/126205/Ekoloji%20Ders%20Notu-2020.pdf
  • Potarzycki, J., Grzebisz, W. (2009). Effect of zinc foliar application on grain yield of maize and its yielding components. Plant Soil Environ., 55 (12): 519–527.
  • Puntel, L.A. (2012). Field characterization of maize photosynthesis response to light and leaf area index under different nitrogen levels: a modeling approach. Graduate Theses and Dissertations. 12673.
  • Roth, J.A., Ciampitti, I.A., Vyn, T.J. (2013). Physiological evaluations of recent drought-tolerant maize hybrids at varying stress levels. Agron. J., 105: 1129–1141.
  • Sharratt, B.S., McWilliams, D.A. (2005). Microclimatic and rooting characteristics of narrow-row versus conventional-row corn. Agron. J., 97: 1129–1135.
  • Sinclair, T.R., Muchow, R.C. (1999). Radiation use efficiency. In: Sparks, Donald L. (Ed.), Advances in Agronomy. Academic Press, pp. 215-265.
  • Singer, J.W., Meek, D.W., Sauer, T.J., Prueger, J.H., Hatfield, J.L. (2011). Variability of light interception and radiation in maize and soybeans. Field Crops Res., 121: 147-152.
  • Singh, D., Singh, S.M. (2006). Response of early maturing maize (Zea mays) hybrids to applied nutrients and plant densities under agro-climatic conditions of Udaipur in Rajasthan. Indian J. Agron., 76 (6): 372-374.
  • Sönmez, E. (2019). Tuz stresi altındaki mısır (Zea mays L.) bitkisinde potasyum uygulamalarının fizyolojik ve biyokimyasal etkisinin araştırılması. Sakarya Ü. Fen Bil. Enst., Yüksek Lisans Tezi, 133 s. Sakarya.
  • Tokatlidis, I.S., Remountakis E. (2020). The impacts of interplant variation on above ground biomass, grain yield, and harvest index in maize. International Journal of Plant Production, 14: 57-65.
  • Tollenaar, M., Lee, E.A. (2011). Strategies for enhancing grain yield in maize. Plant Breed. Rev., 34: 37-82.
  • Torres, G.M. (2012). Precision planting of maize (Zea mays L.). Oklahoma State University, Thesis of Doctor of Philosophy, Oklahoma.
  • Tsubo, M. (2000). Radiation interception and use in a maize and bean intercropping system. Doctor of Philosophy in the Faculty of Natural and Agricultural Sciences, Department of Agrometeorology at University of the Orange Free State Bloemfontein.
  • Tsubo, M., Walker, S. (2005). Relationships between photosynthetically active radiation and clearness index at Bloemfontein, South Africa. Theor. Appl. Climatol., 80: 17–25.
  • Vina, A., Gitelson, A.A. (2005). New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops. Geophysical Research Letters, 32: L17403.
  • Yalçın, G., Demircan, M., Ulupınar, Y., Bulut, E. (2005). Klimatoloji-I. Çevre ve Orman Bakanlığı, Devlet Meteoroloji İşleri Genel Müdürlüğü Yayınları, Yayın No: 2005/1.
  • Zhao, J., Lin, X., Gretchen, F., Sassenrath, S.D., Shuo, L., Xiaochao, C., Fanjun, C., Guohua, M. (2011). Radiation interception and use efficiency contributes to higher yields of newer maize hybrids in Northeast China. Agronomy Journal, 107 (4): 15-20.

Determining The Attainable Maximum Grain Yield Amount Based on Radiation Data in Corn Production Under Optimum Growing Conditions: The Case of Konya

Yıl 2022, Cilt: 11 Sayı: 2, 201 - 211, 28.12.2022

Öz

Genetic yield potential of newly developed hybrid varieties in grain corn production is accepted as 4000 kg da-1. The average grain corn yield of our country is 941 kg da-1. In order to obtain products close to the genetic yield potential in plant production, the maximum amount of yield (target) that can be reached must be determined correctly. The total amount of intercepted photosynthetically active radiation (IPAR) during the vegetation period, the efficiency of using the captured radiation into chemical energy (dry matter) (RUE) and the harvest index values (HI) determine the target yield amount. Atmospheric conditions such as geographic location, time, relative humidity, pressure, optical depth and aerosol concentration affect the amount of photosynthetically active radiation (PAR). RUE and HI values differ according to the genetic characteristics of cultivars such as canopy structure, leaf area index, harvest index, early and late maturity period, climate and environment conditions such as PAR intensity, temperature, humidity, precipitation, soil condition, cultivation practices such as plant densities, irrigation, fertilization, disease and pest control, and the use of intercepted or absorbed total radiation values in the calculation. Theoretically, the maximum potential RUE values that can be reached for maize plant under optimum growing conditions without stress conditions are stated as 5.5 g MJ-1. For maize, an HI value of 0.5 is considered average. According to the radiation data, the maximum yield that can be reached theoretically in corn grain production in Konya was calculated as 2822 kg da-1. In order to reach this calculated yield amount, the amount of nutrients to be removed from the soil by the plant must be correctly determined and after deducting the amount available in the soil from these amounts, the remaining amount should be given with irrigation water at the right amount and time by following the daily plant development.

Kaynakça

  • Andrade, F.H., Uhart, S.A., Agruissain, G.G., Ruiz, R.A. (1992). Radiation use efficiency of maize grown in a cool area. Field Crops Res., 28: 345–354.
  • Anonim, 2012. Konya’da yenilenebilir enerji kaynakları malzeme üretilebilirlik araştırması. http://www.konyadayatirim.gov.tr/images/dosya/Jeotermal%20Enerji%20%20Konya%E2%80%99da%20Yenilenebilir%20Enerji%20Kaynaklar%C4%B1%20Malzeme%20%C3%9Cretebilirlik.pdf
  • Araus, J.L., Tapia, L., Alegre, L., Casadesus, J., Bort, J. (2001). Recent Tools for the Screening of Physiological Traits Determining Yield. In M.P. Reynolds, J.I. Ortiz-Monasterio and A. McNab, eds. Application of Physiology in Wheat Breeding. Mexico, CIMMYT.
  • Araus, J.L., Serret, M.D., Edmeades, G.O. (2012) Phenotyping maize for adaptation to drought. Front. Physiol., 3: 305.
  • Asar, M., Yalçın, S., Yücel, G., Nadaroğlu, Y., Erciyas, H. (2007). Zirai Meteoroloji. Çevre ve Orman Bakanlığı, Devlet Meteoroloji İşleri Genel Müdürlüğü Yayınları.
  • Beadle, C.L. (1985). Plant Growth Analysis. Techniques in Bioproductivity and Photosynthesis. Edit by J. Coombs, D.O. Hall, S.P. Kong and J.M.O. Scurlock. Chapter 2, p. 20–25.
  • Bonelli, L.E., Andrade, F.H. (2020). Maize radiation use-efficiency response to optimally distributed foliar nitrogen-content depends on canopy leaf-area index. Field Crops Research, 247: 1-8.
  • Bonelli, L.E., Cerudo, A., Pico, L.B.O., Di Matteo, J.A., Monzon, J.P., Rizzalli, R.H., Andrade, F.H. (2020). Does the photo-thermal environment limit post-flowering maize growth? Field Crops Research, 252: 1-10.
  • Dalchau, N., Hubbard, K.E., Robertson, F.C., Hotta, C.T., Briggs, H.M., Stan, G.B., Gonçalves, J.M., Webb, A.A. (2010). Correct biological timing in arabidopsis requires multiple light-signaling pathways, proceedings. National Academy of Sciences, USA, 107 (29): 13171-13176.
  • Deo, R.C., Downs, N.J., Adamowski, J.F., Parisi, A.V. (2019). Adaptive neuro-fuzzy inference system integrated with solar zenith angle for forecasting sub-tropical photosynthetically active radiation. Food Energy Secur, 145-151.
  • Djaman, K., Irmak, S., Rathje, W., Martin, R., Derrel, L. Eisenhauer, D.E. (2013). Maize evapotranspiration, yield production functions, biomass, grain yield, harvest index, and yield response factors under full and limited irrigation. Biological Systems Engineering, Papers and Publications, 407.
  • Drouet, J.L., Kiniry, J.R. (2008). Does spatial arrangement of 3D plants affect light transmission and extinction coefficient within maize crops?. Field Crops Research, 107: 62–69. Earl, H.J., Davis, R.F. (2003) Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron. J., 95: 688–696.
  • Edwards, J.T., Purcell, L.C., Vories, E.D. (2005). Light interception and yield potential of short-season maize (Zea mays L.) hybrids in the Midsouth. Agron. J., 97: 225-234.
  • Gallagher, J. N., Biscoe, P.V. (1978). Radiation absorption, growth and yield of cereals. J. Agric. Sci., 91: 47-60.
  • Gallo, K.P., Craig, S.T., Daughtry, C.S.T., Weigand, C.L. (1993). Errors in measuring absorbed radiation and computing crop radiation use efficiency. Agron. J., 85: 1222–1228.
  • Garcia-Rodriguez, A., Garcia-Rodriguez, S., Diez-Mediavilla, M., Tristan, C.A. (2020). Photosynthetic active radiation, Solar Irradiance and the CIE Standard Sky Classification Appl. Sci., 10: 8007.
  • Gou, F., Van Ittersum, M.K., Simon, E., Leffelaar, P.A., Van der Putten, Peter, E.L., Zhang, L., Van der Werf, W. (2017). Intercropping wheat and maize increases total radiation interception and wheat RUE but lowers maize RUE. Eur. J. Agron., 84: 125-139.
  • Greenup, A., Peacock, W.J., Dennis, E.S., Trevaskis, B. (2009). The molecular biology of seasonal flowering-responses in arabidopsis and the cereals, Annals of Botany, 103 (8): 1165-72.
  • Guiducci, M., Antognoni, A., Benincasa, P. (1992). Effect of water availability on leaf movement, light interception and light utilisation efficiency in several field crops. Riista di Agronomia, 27: 392-397.
  • Hao, B., Xue, Q., Marek, T.H., Jessup, K.E., Hou, X., Xu, W., Bynum, E.D., Bean, B.W. (2016). Radiation-use efficiency, biomass production, and grain yield in two maize hybrids differing in drought tolerance. J. Agro Crop Sci., 269–280.
  • Hossain, M.M., Rumi, M.S., Nahar, B.S., Batan, M.A. (2014). Radiation use efficiency in different row orientation of maize (Zea mays L.). J. Environ. Sci. & Natural Resources, 7 (1): 41-46.
  • Hunt, R. (1982). Plant growth curves: The functional approach to plant growth analysis. Edward Arnold Limited, London. 248 pp.
  • Ion V., Georgeta, D., Marin, D., Georgeta, T., Ioan, N., Alecu, A., Gheorghe, B., Daniel, S. (2015). Harvest index at maize in different growing conditions. Romanian Biotechnological Letters, 20 (6): 15-20.
  • Ismail, A.M.A. (1993). A Critical analysis of harvest index. Qatar Univ. Sci. J., 13(2): 253- 263.
  • Kanton, R.A.L., Dennett, M.D. (2000). Radiation capture and use as affected by morphologically contrasting maize/pea in sole and intercropping. West African Journal of Applied Ecology, 13: 1-8.
  • Karaşahin, M. (2021). Sürdürülebilir ve Hassas Tanelik Mısır Üretimi. Nobel Bilimsel Eserler, Ankara. https://www.nobelyayin.com/surdurulebilir-ve-hassas-tanelik-misir-uretimi_16865.html
  • Khan, S., Khan, A., Jalal, F., Khan, M., Khan, H. (2017). Dry matter partitioning and harvest index of maize crop as influenced by integration of sheep manure and urea fertilizer. Adv. Crop Sci. Tech., 5: 276.
  • Kiniry, J.R., Jones, C.A., Blanchet, R., O’ Toole, J.C., Cabelguenne, M., Spanel, D.A. (1989). Radiation use efficiency in biomass accumulation prior to grain filling in five grain crop species. Field Crops Research, 20: 51-64.
  • Kopsell, D.A., Sams, C.E., Morrow, R.C. (2015). Blue wave lengths from led lighting increase nutritionally important metabolites in specialty crops. Hortscience, 50 (9): 1285-1288.
  • Kukal, M.S., Irmak, S. (2020). Light interactions, use and efficiency in row crop canopies under optimal growth conditions. Agricultural and Forest Meteorology, 284: 107-887.
  • Kuşçu, H., Demir, A.O. (2012). Responses of maize to full and limited ırrigation at different plant growth stages U. Ü. Ziraat Fakültesi Dergisi, 26 (2): 15-27.
  • Lindquist, J.L., Arkebauer, T.J., Walters, D.T., Cassman, K.G., Dobermann, A. (2005). Maize radiation use efficiency under optimal growth conditions. Agron. J. 97: 70-72. https://doi.org/10.2134/agronj2005.0072.
  • Liu, X., Rahman, T., Yang, F., Song, C., Yong, T., Liu, J. (2017). PAR interception and utilization in different maize and soybean intercropping patterns. PLoS ONE, 12 (1): 169218.
  • Loomis, R.S., Amthor, J.S. (1999). Yield potential, plant assimilatory capacity, and metabolic efficiencies. Crop Sci. 39: 1584-1596.
  • Lucas, E. (1981). The growth of two maize varieties in farmers, plots located at two contiguous ecological zones in Nigeria. J. Agric. Sci. Camb., 97: 125-134.
  • Maddonni, G.A., Otegui, M.E., Cirilo, A.G. (2001). Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Research, 71: 183-193.
  • Mahesh, N., Rani, P.L., Sreenivas, G., Madhavi, A. (2015). Resource use efficiency of kharif maize under varied plant densities and nitrogen levels in Telangana State, India Int. J. Curr. Microbiol. App. Sci., 4 (7): 632-639.
  • Massa, G.D., Kim, H.H., Wheeler, R.M., Mitchell, C.A. (2008). Plant productivity in response to led lighting. HortScience, 43 (7): 1951-1956.
  • Massignam, A.M., Chapman, S.C., Hammer, G.L., Fukai, S. (2009). Physiological determinants of maize and sunflower grain yield as affected by nitrogen supply. Field Crops Res. 113: 256-267.
  • Maxwell, K., Johnson, G.N. (2000). Chlorophyll fluorescence a practical guide. Journal of Experimental Botany, 51 (345): 659-668.
  • Monteith, J.L. (1972). Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 747-766.
  • Morales, F., Maria ,A., Dorra F., Gonzalez-Torralba, J., Angie, L. Gamez, A.S., David, S., Sinda, B.M., Miguel, G., Iker, A. (2020). Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants, 9: 88.
  • Muchow, R.C. (1994). Effect of nitrogen on yield determination in irrigated maize in tropical and subtropical environments. Field Crops Res. 38: 1-13.
  • Otegui, M.E., Nicolini, M.G., Ruiz, R.A., Dobbs, P.A. (1995). Sowing date effects on grain yield components for different maize genotypes. Agron. J., 87: 29-33.
  • Özcan, M. (2020). Ekoloji Ders Notu. https://avys.omu.edu.tr/storage/app/public/muozcan/126205/Ekoloji%20Ders%20Notu-2020.pdf
  • Potarzycki, J., Grzebisz, W. (2009). Effect of zinc foliar application on grain yield of maize and its yielding components. Plant Soil Environ., 55 (12): 519–527.
  • Puntel, L.A. (2012). Field characterization of maize photosynthesis response to light and leaf area index under different nitrogen levels: a modeling approach. Graduate Theses and Dissertations. 12673.
  • Roth, J.A., Ciampitti, I.A., Vyn, T.J. (2013). Physiological evaluations of recent drought-tolerant maize hybrids at varying stress levels. Agron. J., 105: 1129–1141.
  • Sharratt, B.S., McWilliams, D.A. (2005). Microclimatic and rooting characteristics of narrow-row versus conventional-row corn. Agron. J., 97: 1129–1135.
  • Sinclair, T.R., Muchow, R.C. (1999). Radiation use efficiency. In: Sparks, Donald L. (Ed.), Advances in Agronomy. Academic Press, pp. 215-265.
  • Singer, J.W., Meek, D.W., Sauer, T.J., Prueger, J.H., Hatfield, J.L. (2011). Variability of light interception and radiation in maize and soybeans. Field Crops Res., 121: 147-152.
  • Singh, D., Singh, S.M. (2006). Response of early maturing maize (Zea mays) hybrids to applied nutrients and plant densities under agro-climatic conditions of Udaipur in Rajasthan. Indian J. Agron., 76 (6): 372-374.
  • Sönmez, E. (2019). Tuz stresi altındaki mısır (Zea mays L.) bitkisinde potasyum uygulamalarının fizyolojik ve biyokimyasal etkisinin araştırılması. Sakarya Ü. Fen Bil. Enst., Yüksek Lisans Tezi, 133 s. Sakarya.
  • Tokatlidis, I.S., Remountakis E. (2020). The impacts of interplant variation on above ground biomass, grain yield, and harvest index in maize. International Journal of Plant Production, 14: 57-65.
  • Tollenaar, M., Lee, E.A. (2011). Strategies for enhancing grain yield in maize. Plant Breed. Rev., 34: 37-82.
  • Torres, G.M. (2012). Precision planting of maize (Zea mays L.). Oklahoma State University, Thesis of Doctor of Philosophy, Oklahoma.
  • Tsubo, M. (2000). Radiation interception and use in a maize and bean intercropping system. Doctor of Philosophy in the Faculty of Natural and Agricultural Sciences, Department of Agrometeorology at University of the Orange Free State Bloemfontein.
  • Tsubo, M., Walker, S. (2005). Relationships between photosynthetically active radiation and clearness index at Bloemfontein, South Africa. Theor. Appl. Climatol., 80: 17–25.
  • Vina, A., Gitelson, A.A. (2005). New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops. Geophysical Research Letters, 32: L17403.
  • Yalçın, G., Demircan, M., Ulupınar, Y., Bulut, E. (2005). Klimatoloji-I. Çevre ve Orman Bakanlığı, Devlet Meteoroloji İşleri Genel Müdürlüğü Yayınları, Yayın No: 2005/1.
  • Zhao, J., Lin, X., Gretchen, F., Sassenrath, S.D., Shuo, L., Xiaochao, C., Fanjun, C., Guohua, M. (2011). Radiation interception and use efficiency contributes to higher yields of newer maize hybrids in Northeast China. Agronomy Journal, 107 (4): 15-20.
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm Derleme
Yazarlar

Muhammet Karaşahin 0000-0001-8586-0701

Yayımlanma Tarihi 28 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 11 Sayı: 2

Kaynak Göster

APA Karaşahin, M. (2022). Optimum Şartlarda Tanelik Mısır Üretiminde Radyasyon Verilerine Dayalı Ulaşılabilecek Maksimum Ürün Miktarı Belirleme: Konya Örneği. Bahri Dağdaş Bitkisel Araştırma Dergisi, 11(2), 201-211.